

2011/SOM1/EWG/WKSP3/008

Agenda Item: III-C- 2(a)

Role for Pricing and Congestion Management in Reducing Urban Transport Times and Energy Use: High Efficiency Transportation Networks

Submitted by: Singapore

APEC Cooperative Energy Efficiency
Design for Sustainability - Energy Efficient
Urban Passenger Transportation
San Francisco, United States
14–16 September 2011

Role for Pricing and Congestion Management in Reducing Urban Transport Times and Energy Use: High Efficiency Transportation Networks

14 September 2011

Presenter

Mr. Jeremy Yap Weng Lock
Group Director, Policy & Planning
Land Transport Authority, Singapore

Land Transport in Singapore

- As presented by Singapore, land transport plays significant role in contributing to sustainable living environment
 - 2nd largest source of CO₂ emissions (19%), behind industry sector
 - 3rd largest consumer of energy (13%), behind industry and building sectors
 CO₂ Contribution by Sector (2005)

OVERVIEW

- Introduction
- Role of ownership & usage pricing in Singapore
- Intelligent Transport Systems (ITS): Leveraging on technologies in congestion management
- Going forward: Importance of public transport

Improving Resource Efficiency: Management of Road Demand

A key strategy of Singapore is the management of road demand via:

- Ownership pricing
- Usage pricing

Ownership Control

- Vehicle Quota System
- Other ownership costs - Additional Registration Fee
 - (ARF)
 - Excise duty
 - Road tax

Usage Restraint

- Electronic Road Pricing (ERP)
- Off-Peak Car (OPC) scheme
- Petrol duty
- Parking policies

Ownership Pricing: Additional Registration Fee (ARF)

- Introduced in 1972 to deter vehicle ownership
 - Raised gradually by 9% p.a. from 1972-1989
- Based on percentage of Open Market Value (OMV) of vehicles
 - · Cars and taxis: 100%
 - Motorcycles: 15%
 - Commercial vehicles & buses: 5%

Ownership Pricing: Vehicle Quota System (VQS)

- Introduced in 1990 to control growth rate of vehicle population
 - 3% p.a. from 1990-2008
 - 1.5% p.a. from 2009
- · Certificate of Entitlement (COE) required to own vehicle
 - 10-year tenure
 - Open Bidding System
 - · 5 quota categories for social equity considerations

Energy Use Reduction from Ownership Pricing

- Smaller car population due to ARF & VQS saves energy consumption from 1975-2008
 - Reduction in 14,500 ktonnes of oil equivalent (ktoe)
 - Equivalent to 42,500 ktonnes (3.8% annual reduction) of CO₂ emission

Usage Pricing: Area Licensing Scheme (ALS)

- Implemented since 1975
 - Motorists required to purchase license to enter Restricted Zone (RZ)
 - Reduces congestion in Central Business District (CBD)
 - Volume of cars entering CBD decreased by 44% during 1st year of implementation

Impact of Road Pricing on CBD Traffic

- Base year: Traffic Volume (Alf peak) 74,014 | Vehicle population 260,378 | Car population 143,159

 3-step reduction in CBD traffic:
 - Implementation of ALS in 1975 44%
 - Revision of ALS in 1989 13.4%
 - Implementation of ERP in 1998 17.2%
 - Despite 173% growth in vehicle population from 1975-2005, usage pricing reduces CBD & city area traffic by average of 35%

Transport Times & Energy Use Reduction from Ownership Pricing

From 1975 to 2008:

- Lower traffic volume in CBD
 - Reduces energy use by 700 ktoe
 - Equivalent to 2,000 ktonnes (0.16% annual reduction) of CO₂ emission
- Reduced congestion on expressways & arterial roads
 - Reduces energy use by 1,300 ktoe
 - Equivalent to 3,700 ktonnes (0.85% annual reduction) of CO₂ emission
 - Reduces average transport times by 33%

International Experience with Road Pricing

- London:
 - Area pricing in Central London
 - Traffic entering charging zone reduced by 25%
 - 14% reduction in transport times

- · Stockholm:
 - Cordon pricing in city centre
 - Traffic in city centre reduced by 10% 15%

Future of Road Pricing in Singapore

- Singapore studying next generation ERP
 - System Evaluation Test (SET) to identify suitable technology
 - Use of Global Positioning System (GPS) makes possible distance-based road pricing

Usage Pricing: Off-Peak Car (OPC) Scheme

- OPC cars constitute about 8.1% of Singapore's total car population
- Motorists receive rebates in exchange for restricted usage of vehicles during restricted hours (7am–7pm)
- Reduction in 50 ktonnes of oil equivalent (ktoe)
- Equivalent to 150 ktonnes (0.12% annual reduction) of CO2 emission

Intelligent Transport Systems (ITS): Leveraging on Technologies

- Green Link Determining System (GLIDE)
- · Expressway Monitoring Advisory System (EMAS)
- Junction Electronic Eyes (J-Eyes)
- Parking Guidance System

Green Link Determining System (GLIDE)

- Controls all traffic signals in Singapore
 - Detects presence of vehicles and pedestrians at junctions of major roads
 - · Allocates green time for motorists and pedestrians based on demand
 - Provides "green wave" link between adjacent junctions to minimise number of stops by vehicles

Expressway Monitoring & Advisory System (EMAS)

- Manages traffic along expressways
 - Detects incidents & provides prompt response to restore normal traffic flow
 - Provides real-time information of incident locations & travelling times along expressways
 - Cost of time saving due to shorter delays estimated at S\$40 million p.a.

Junction Electronic Eyes (J-Eyes)

- Enhances traffic flow at major road junctions
 - System of surveillance cameras allows spotting and rectification of traffic congestion
 - Deters illegal parking and loading/unloading along major roads
 - · More than 320 cameras on roads

Parking Guidance System (PGS)

- Provides information on available parking facilities
 - Promotes more efficient use of existing parking facilities
 - Reduces unnecessary circulating traffic
 - 27 electronic panels in city area and key shopping districts

Other Initiatives to Improve Resource Efficiency

- Green Framework for rail systems:
 - Use of equipment & technology that regenerates energy
- · Encouraging fuel-efficient vehicles

Initiatives to Achieve Cleaner Transport

- Adopting cleaner diesel vehicles
- Establishment of vehicle emission test laboratory
- Encouraging non-motorised transport through investments in infrastructure

Conclusion: Public Transport as Main Pillar of Sustainability & Efficiency

- Public transport is most efficient mode of transport, both in terms of land & energy use
- Target modal share of 70% of journeys made during morning peak hours via public transport by 2020

