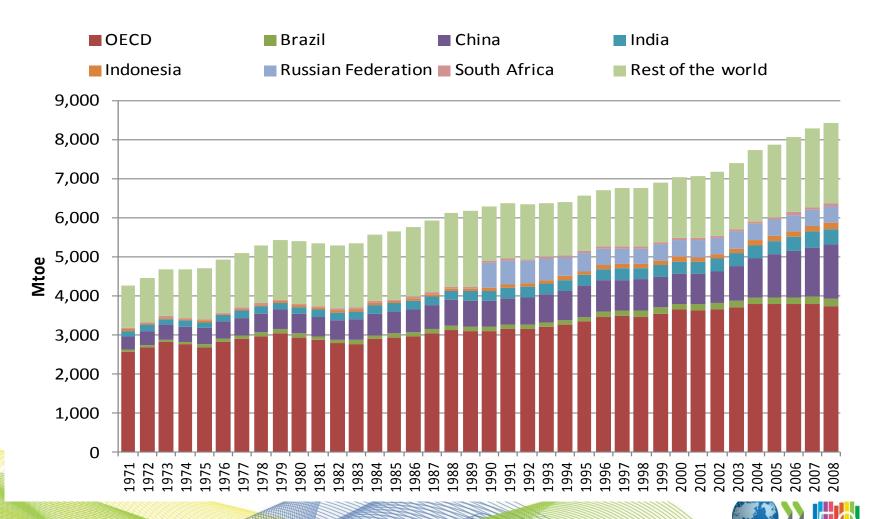


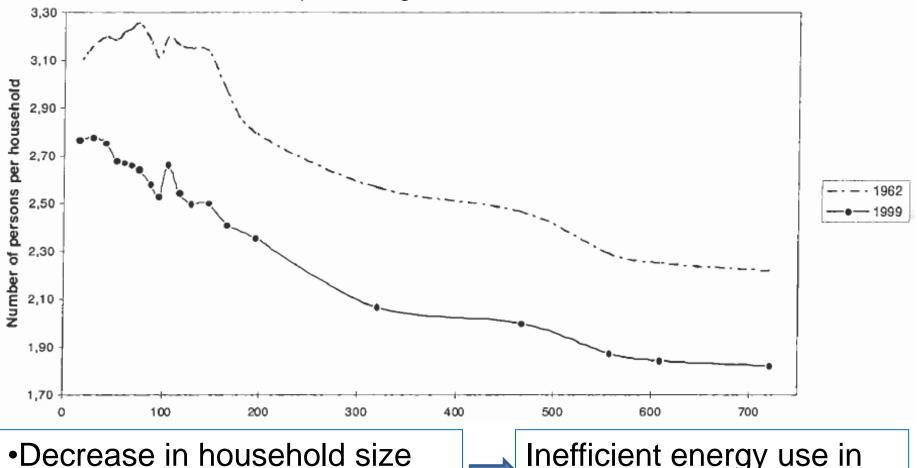
Energy, Transport and Sustainable Urban Form : Outline of OECD's Upcoming Projects


Yasushi YOSHIDA

Head of Division Regional Policies for Sustainable Development

March 12, 2012 US Department of Housing and Urban Development; Washington, DC

Why Energy?


Total energy consumption (1971-2008)

Why Energy?

Average household size by density areas

Paris metropolitan region, 1962 and 1999

Increase in house size

Inefficient energy use in the developed countries

Why Energy?

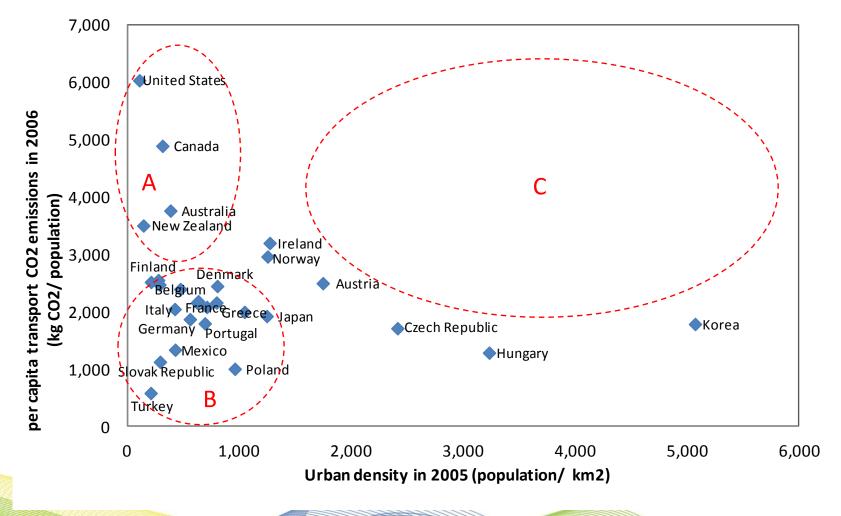
From Fossil Fuel /Nuclear to Renewable Energy?

From Centralized Energy System to Decentralized one?

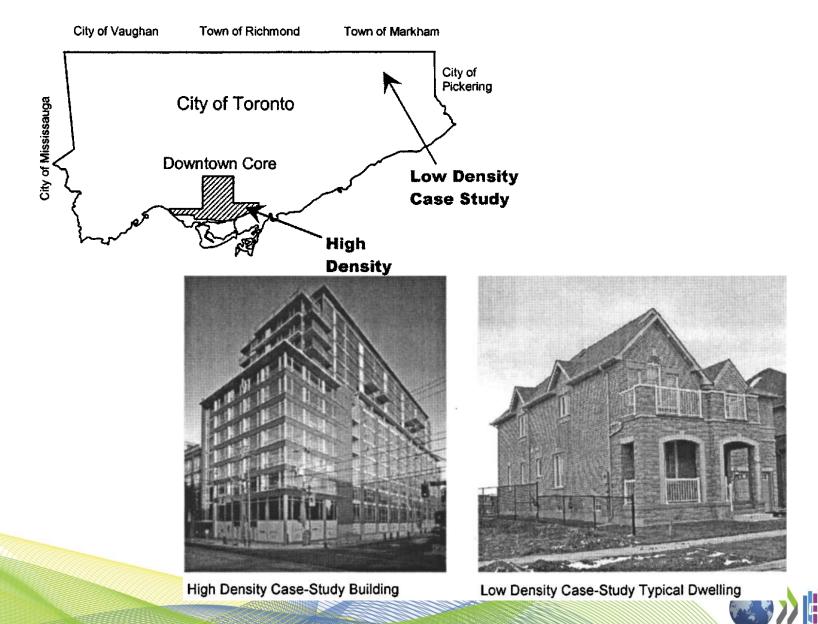

Compact City to Save Energy

Explosive development in the developing countries
Growing inefficiency in the developed world city
Newly recognized risks around the conventional energy policy

Compact City



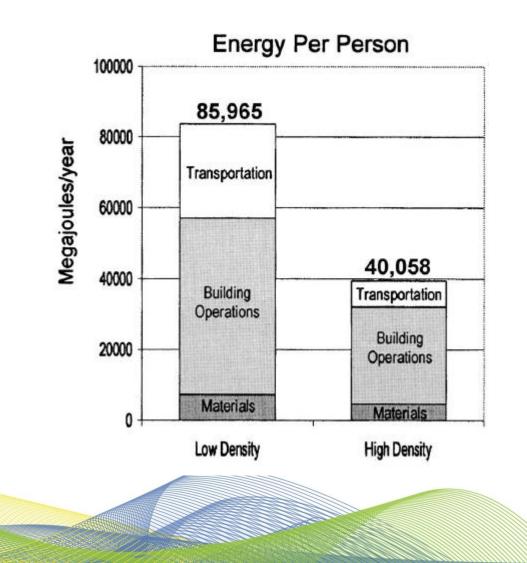
Electricity consumption per capita and density in predominantly urban areas, 2005-06



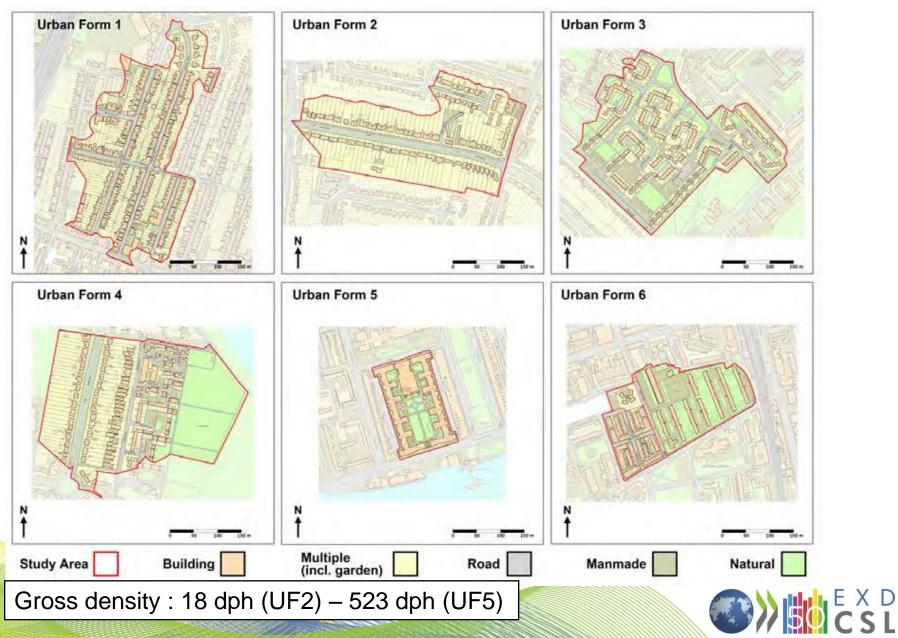
CO₂ emissions per capita in transport and density in predominantly urban areas, 2005-06

Case studies (1) :Norman, J. et al. (2006)

E X D CSL


Case studies (1) :Norman, J. et al. (2006)

- Three major elements of urban development are considered.
- (1)Construction materials for infrastructure (including residential dwellings, utilities and roads)
 (2) Building operations, and
- (3)Transportation (Private automobiles and public transit)


Estimate life-cycle energy consumption per capita

Case studies (1) :Norman, J. et al. (2006)

Urban Form	1	2	3	4	5	6
Gross Density (dph)	55	18	33	27	523	100
Energy per Dwelling (kWh)	14,163	15,571	13,327	13,400	9,457	10,050

Negative correlation between "gross density "and "energy per dwelling" ($r_s = -0.829$, p< .05).

CSI

dph : dwellings per hectare

Table 3. Low carbon technologies and their requirements

Technology	Requirements	
Photovoltaics	Roof or space facing SE/SW	Can export electricity if connected to grid, more cost effective if high on-site demand
Solar thermal	Roof or space facing SE/SW	Hot water demand on-site
Ground Source Heat Pump	Land area for ground collector or a water source	Building with a space heating (and possibly cooling) demand and low temperature heating system (e.g. under-floor)
Micro-CHP and CHP	Domestic or communal space	Proportional heat and electricity demand, scope for heat network

Urban Form	1	2	3	4	5	6
Water	Solar thermal:	Solar	Micro-CHP:	Micro-CHP:	CHP:	CHP:
Heating	437 panels of	thermal: 148	488298	340400;	1965438	781755
Demand	100 (lit)	panels of		GSHP:		
(kWh)	capacity	100 (lit) capacity		133274		
Space Heating	GSHP:	GSHP:	Micro-CHP:	GSHP:	CHP:	CHP:
Demand	4158000;	1663200;	1746072	2195206;	3197088	1288043;
(kWh)	electricity	electricity		electricity		GSHP:
	required:	required:		required:		1663200;
	864000	345600		483840		electricity
						required:
						345600
Electricity	PV: 1026205	PV: 720804	Micro-CHP:	PV: 691619;	CHP:	CHP:
Demand			744790	Micro-CHP:	2868070	1149888
(kWh)				113467		
Renewable/	6017498	2691716	2979160	3473966 kWh	8030596	4823977
low carbon supply	kWh	kWh	kWh		kWh	kWh
Other supply	Grid elect.:	Grid elect.:	Gas:	Grid elect.:	Gas:	Grid elect.:
(kWh)	1118901	101543	4232007	399961	20399786	345600
				Gas: 533961		Gas:
						6431969
Renewable/	84%	96%	41%	79%	28%	42%
low carbon						

CHP: combined heat and power, GSHP: ground source heat pump PV: photovoltaic panel

Centralized vs. Decentralized Resource Management Systems

Characteristics of centralized systems;

(1)They tend to function in isolation, ignoring important synergy

(2)They allow resources to flow through cities in a linear fashion, not circular flows

(Rauland, V and Newmann, P.(2011))

How can we introduce decentralized system (ex. renewable power generation) into existing cities?

How can we benefit from the synergy between different systems?

Is high density a good condition for the introduction of decentralized system?

EV?

http://www.paris.fr/pratique/voitures-deux-roues-motorises/autolib/quelstrajets-faire-avec-autolib/rub_10055_actu_107631_port_25190

Thank you.

Cheng, V. et al. (2011), A Study of Urban Form and the Integration of Energy Supply Technologies, World Renewable Energy Congress 2011-Sweden 8-13 May 2011, Linkoping, Sweden

Norman, J. et al. (2006), **Comparing High and Low Residential Density:** Life-Cycle Analysis of Energy Use and Greenhouse Gas Emissions, *Journal of Urban Planning and Development, Vol.* 32, No. 1, March 1, 2006.

Rauland, V. and Newman, P.(2011) **Decarbonising Australian cities: A new model for creating low carbon, resilient cities,** 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011 http://mssanz.org.au/modsim2011