Appendix 2

Low Carbon Measures Along With Case Examples

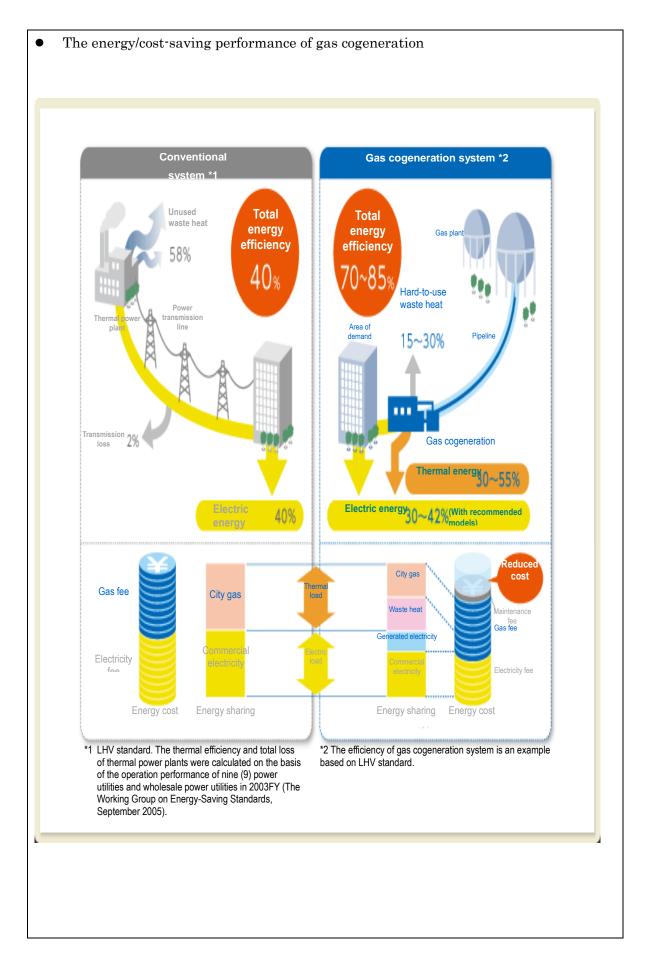
(1) Cogeneration System

Classification of Measures			Low Carbon Measure		olicability e of n	y as per	
Supply/ Demand	Major Classi [.] fication	Minor Classi- fication		І П Ш			
Supply side	Generating/ distributing power	Infrastructures for generating/ storing Power	Cogene- ration System	Н	н	L	L

Overview of Measures and Applicability

- Cogeneration is a system that generates electricity where needed using city gas for fuel, and at the same time makes efficient use of generated heat for cooling, heating, hot-water supply, steam etc.
- Cogeneration has a wide range of application for a variety of areas and systems that use heat, including those for households/businesses, large cities, middle cities and farming villages etc., as well as district cooling/heating (district-scale use) and smart energy systems etc.
- As for its application in farming villages, there are cases where this system is used as a tri-generation using electricity, heat and CO2 for greenhouse cultivation.
- •


Expected CO2 Reducing Effect


• Compared with conventional systems (thermal power + boilers), it can reduce CO2 emissions by about 30-40%.

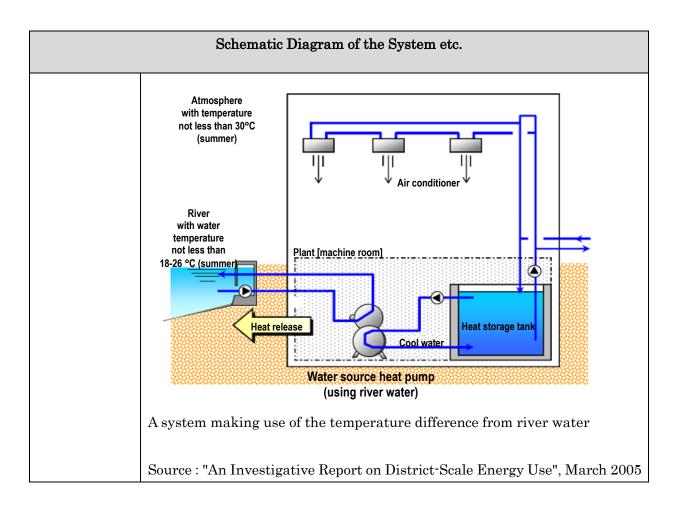
Examples of Application

• Around 5 million kW in total has been introduced in Japan (in stock).

Schematic Diagram of the System etc.

(2) Using sea/river water

Classification	ı of		Low	Aŗ	plicabili	ty as per	
Measures			Carbon	Type of			
			Measure	Town			
Supply/	Major	Minor		Ι	II	Π	IV
Deman	Classi-	Classi-				Ι	
d	fication	fication					
Supply	Untapp		Using sea/		Н	Μ	\mathbf{L}
side	ed		river				
energy			water				
		Ower of N	fooduned and Ann	licohili			


Overview of Measures and Applicability

- As sea/river water temperature is stable and is lower in summer and higher in winter than the atmospheric temperature, it will contribute to improving energy efficiency both as a coolant of heat pumps used in heat source equipment for cooling and as a heat source water of heat pumps for heating/hot-water supply.
- As the use of seawater requires countermeasures for salt damage to equipment and for marine organisms, and the use of river water requires drought management measures etc., it is a common practice to combine the use of sea/river water with large-scale facilities such as district heat supply systems.

Expected CO2 Reducing Effect

- It is expected that CO2 will be reduced through improving energy efficiency in cooling/heating and hot-water supply in the relevant communities.
- •

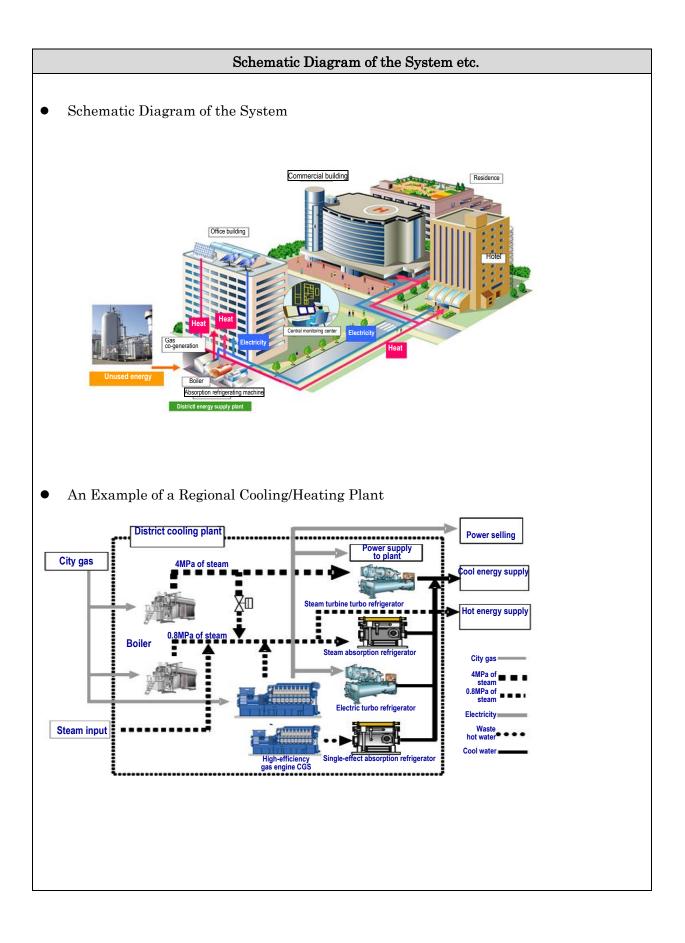
Examples of Application

(3) District heating and cooling (DHC)

Classification	ı of		Low	App	licability a	ls per			
Measures			Carbon	Type of					
			Measure	Town					
Supply/	Major	Minor		Ι	Π	III	IV		
Demand	Classi-	Classi-							
	fication	fication							
Supply side	District		District		Н	Μ	L		
	energy		heating						
	(heat		and cooling						
	supply)		(DHC)						
	Overview of Measures and Applicability								
• It connect	• It connects multi-purpose buildings in certain regions via regional conduits, and supplies								
cooling/he	eating media	from regional er	nergy supply p	lants in a	n efficient	manner.			

• By means of this system, not only energy-saving but also energy security and urban aesthetic can be promoted, which include labor-saving, efficient use of building spaces, pollution-abatement, heat-island countermeasures, prevention of urban disasters etc.

Expected CO2 Reducing Effect


• Compared with individual (heat source) systems, primary energy consumption can be reduced by 10%-14%*. Further reduction of energy consumption (by not less than 20%) can be realized by utilizing unused energy, contributing to a significant reduction of CO2.

* "District-Scale Utilization of Unused Energy 🔹 the Current Status of Heat Supply and the Direction towards the Next Generation",

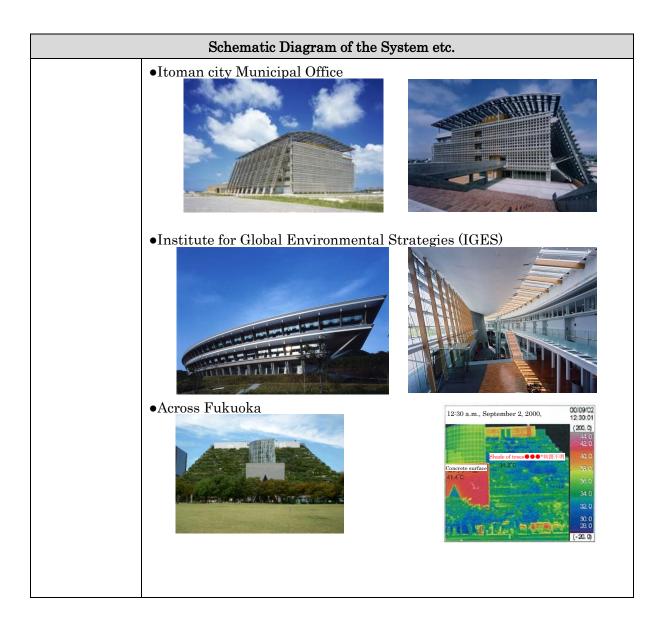
Ministry of Economy, Trade and Industry (March 2008)

Examples of Application

Shinjuku Sub-center, Marunouchi District, Osaka Senri New Town Chuo District etc.

(4) Sunlight shading and thermal insulation

Classification	n of		Low	Appli	cability a	as per	
Measures		Carbon	Туре	Type of Town			
Supply/	Major	Minor	Measure	Ι	II	III	IV
Demand	Classi-	Classi-					
	fication	fication					
Demand	Building	Reducing	Sunlight				
side		load	shading and				
		(Thermal)	thermal				
			insulation				
	(Overview of Mea	sures and App	licability			


- Sunlight shading is very effective in reducing thermal load put into a building from outside. As the solar elevation changes according to its bearing, the type of suitable eaves or blinds also varies. In planning sunlight shading, it is necessary to take the building exterior into account so that the sunlight would be effectively shaded.
- Shutting off sunlight on the outer side of a building is more effective. External blinds installed on the outer side of a building would help reduce the thermal load in the rooms. They also play the role of adjusting natural lighting when the blinds are designed to change their angles automatically according to the solar elevation.
- Planting vegetation around a building cuts direct sunlight off the concrete surface and takes effect on controlling the rise in the air temperature around the building because of evapo-transpiration effect.

Expected CO2 Reducing Effect

• Power consumption cut is expected due to the reduction of air conditioning load thanks to the lowered temperature inside the building and natural lighting. As a result, it takes effect on the reduction of CO2 emission.

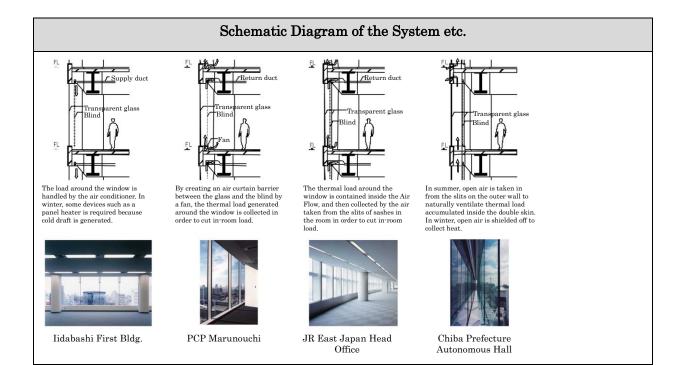
Examples of Application

Itoman city Municipal Office, Institute for Global Environmental Strategies (IGES) Main office Building, Across Fukuoka (Commercial-Office-Cultural Complex)

(5) Façade engineering

Classification	Classification of			App	licability	v as per	
Measures			Carbon	Type of Town			
Supply/	Major	Minor	Measure	Ι	п	III	IV
Demand	Classi-	Classi-					
	fication	fication					
Demand	Buildings	Reducing	Façade				
side		load	engineering				
		(Thermal)					
		Overview of N	Measures and Ar	plicabili	ty		

• The façade engineering refers to the technology of reducing thermal load from outside by applying high heat characteristics to the window and outer wall which constitute a façade.


- The important component is high performance glass, such as the duplex glass containing air space between two pieces of glass and low-e glass with specific coating for blocking the radiation heat from traveling through. These types of glass also enhance indoor environmental performance around the windows.
- One possible approach is the "Air flow windows". They improve the thermal insulation properties and sunlight shading around a bow window by creating a kind of air curtain by ventilating inside the double-layered glass equipped with a built-in blind. Ordinarily, room air is sucked from beneath the glass window and the air inside the double-layered glass is led to under the ceiling with a ventilation fan mounted under the ceiling.

Expected CO2 Reducing Effect

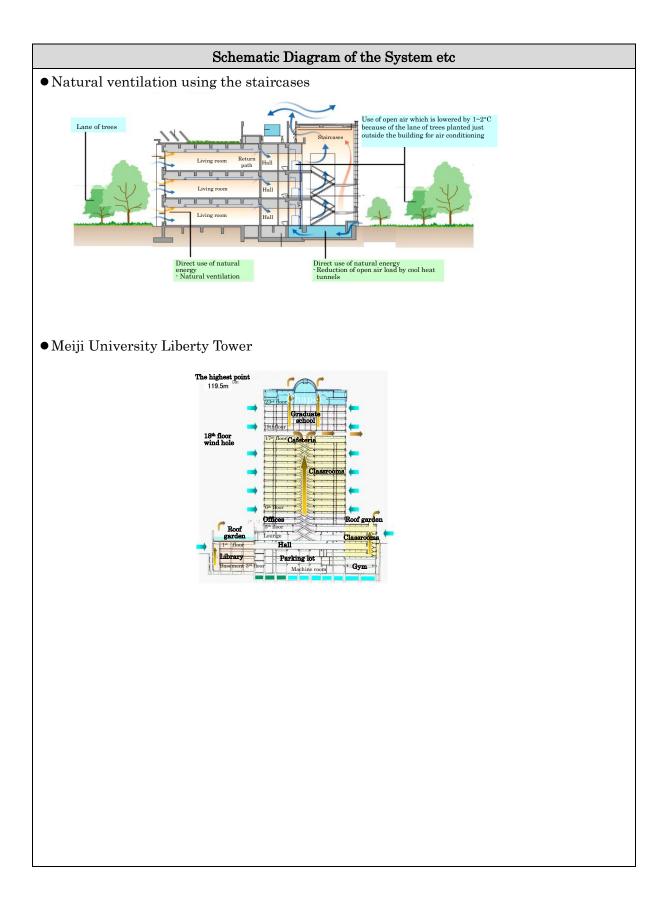
• Diagrams below show the simulation examples of PMV when using ordinary glass only and using low-e glass plus eaves, the peak load of the perimeter, and annual thermal load. The result shows that the employment of eaves plus low-e glass cuts the peak load by 43%, indicating that approximately 16% of thermal load will be slashed annually.

Examples of Application

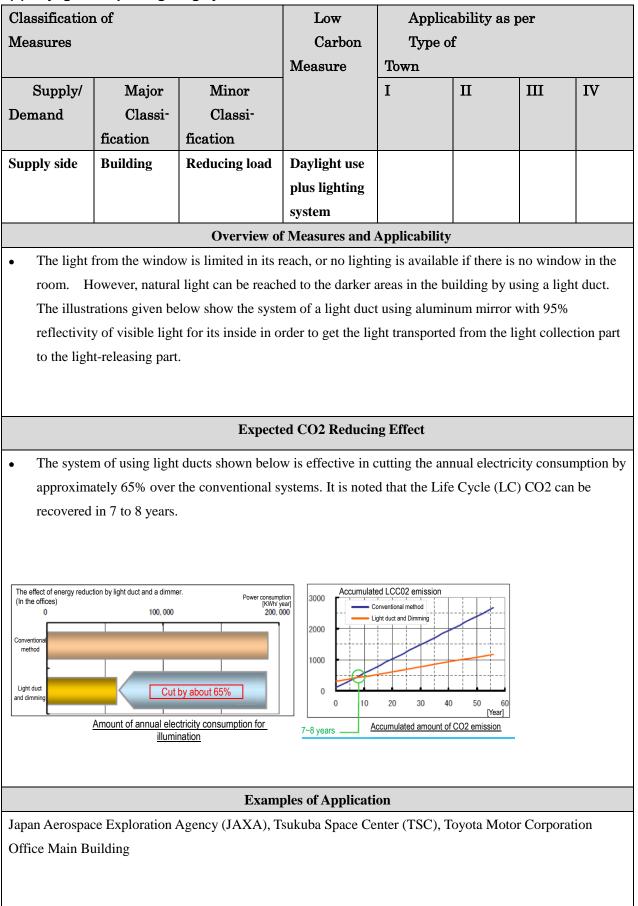
Iidabashi First Building, etc.

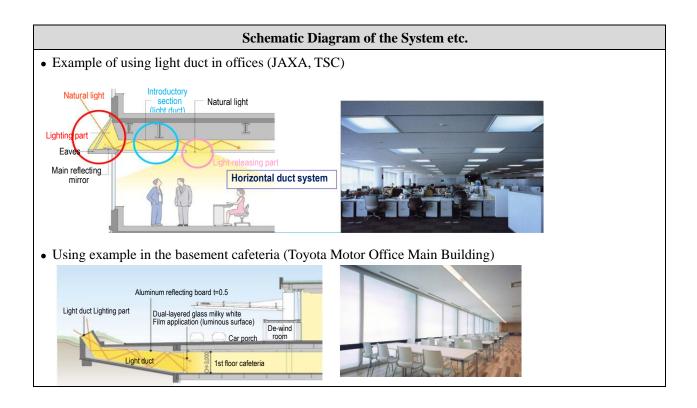
(6) Natural ventilation

Classification	Classification of			Applicability as per				
Measures			Carbon	Туре	of Town			
Supply/	Major	Minor	Measure	I	п	ш	IV	
Demand	Classi-	Classi-						
	fication	fication						
Demand	Buildings	Reducing	Natural					
side		Load	ventilation					
		(Thermal)						
	Overview of Measures and Applicability							

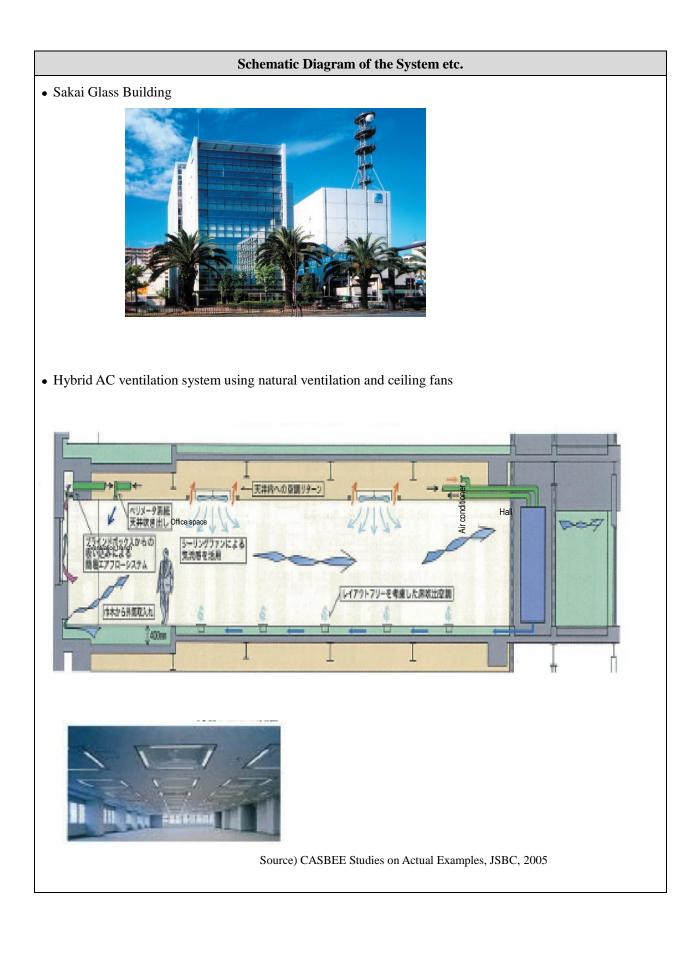

- The mid-term air-conditioning energy can be reduced by planning to take natural wind into rooms, for instance by installing apertures or opening-closing windows effectively or natural ventilation voids inside the building.
- The void enables natural air flow even when it is calm. (The natural ventilation by the difference in temperatures between tops and bottoms.) Moreover, natural ventilation can be effectively obtained no matter which direction the wind blows. (The wind shielding board prompts natural ventilation as negative pressure zone is created when the wind flows through the upper part). Example: Meiji University Liberty Tower (Top figure)
- Natural ventilation using the staircases can also produce the same effect as installing natural ventilation voids and wind shielding boards. (When air is calm, ventilation is enabled naturally by the difference in temperatures between upper and lower part of the staircases. When a wind shielding board is mounted on the top, a negative pressure zone is created as the wind passes through the upper part, thereby allowing natural ventilation free of the wind direction. (Bottom figure)

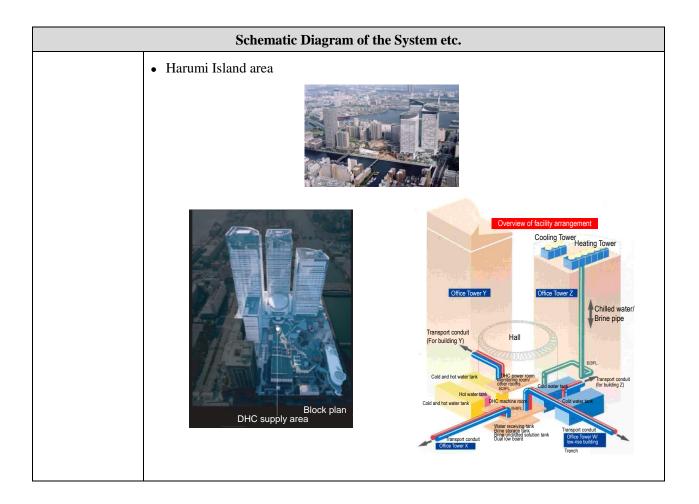
Expected CO2 Reducing Effect


• Reduction of CO2 as a result of reduced air conditioning load


Examples of Application

Meiji University Liberty Tower

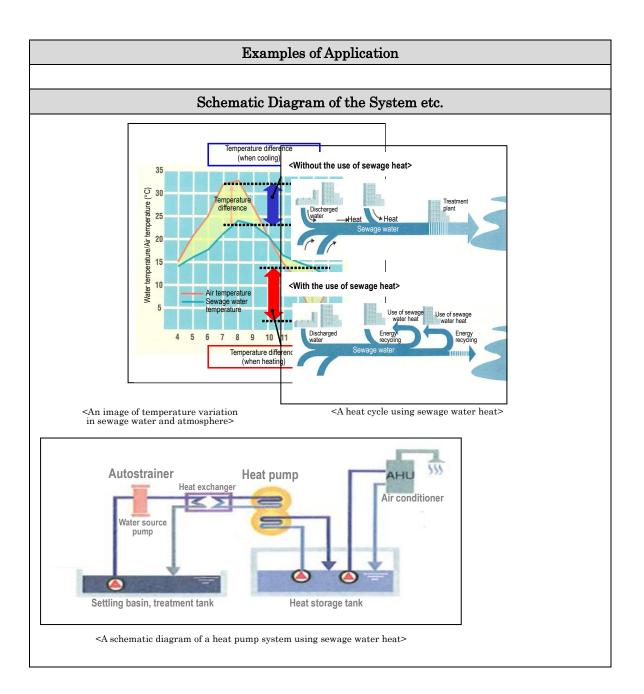

(7) Daylight use plus lighting system


(8) Hybrid of natural ventilation plus air conditioning

Classification	n of		Low	App	olicabilit	y as per	
Measures			Carbon	Тур	e of		
			Measure	Town			
Supply/	Major	Minor		Ι	II	III	IV
Demand	Classi-	Classi-					
	fication	fication					
Supply side	Building	Reducing load	Hybrid of				
		(Thermal)	natural				
			ventilation plus				
			air conditioning				
		Overview of N	leasures and Appli	cability			
condition blow-out • A ceiling	ing systems, air air conditioning fan generates g h less electricity	current feeding by as well as the naturentle air current by		r mount	Cross-sectional view		
		Expected	CO2 Reducing Eff	ect			
Air condi	tioning load car	be reduced by ma	king natural ventilat	ion as the	principal	approach.	Further
		pected by employin along with natural	ng a human sensor o ventilation.	r an auton	natic light	dimmer fo	r making
		Exam	ples of Application				
Sakai Gas Bui	lding						

(9) High-efficient heat source plus heat storage

Classification	ı of		Low	Appli	cability a	as per				
Measures			Carbon	Туре	of Town					
Supply/	Major	Minor	Measure	I	Π	III	IV			
Demand	Classi-	Classi-								
	fication	fication								
Supply side	Building	High-efficient	High-efficient							
		Facility	heat source							
		systems	plus heat							
			storage							
	Overview of Measures and Applicability									
• In an intensive and high density district development on a large scale, a system of generating cold/hot										
water and	steam at the ce	ntral plant in the d	istrict and supplyin	ng them to in	ndividual	buildings ca	n better			
contribute	to the realizati	on of a low-carbor	n society by making	g the best of	scale men	rit.				
• The centra	al plant in the d	istrict is divided in	to three categories							
1) Electricity s	ystem: a system o	f generating cold and	hot water by using tu	rbo chillers, h	eat pump ch	niller, etc.				
			steam by gas-absorpti	ion chillers or	steam abso	rption chillers	using the			
-	d (CHP) steam ex		· 11 · ·	<i>(</i>) <i>() <i>() () () () () () () () () <i>() () () () <i>() () () () <i>() () () <i>() () () <i>() () () <i>() () <i>() () () <i>() <i>() () <i>() () <i>() <i>() () <i>() <i>() <i>() <i>() () <i>() <i>(,) <i>() <i>() <i>(,) <i>() <i>() <i>((</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	\1 1	•••••••••••••••••••••••••••••••••••••••				
	2) gas heat source		nerating cold water, st	eam (not wate	er) by comb	ining 1) electr	ic neat			
			e above-mentioned	systems wi	th unused	energies su	ch as			
	-		waste incineration	-		U				
	-	Expecte	ed CO2 Reducing	Effect						
• The use of	highly efficier	it district air condi	tioning and heating	allows the	reduction	of air condi	tioning			
load, whic	h is expected to	o reduce CO2 emis	sion significantly.							
• Furthermo	ore, the reduction	on of CO2 emission	n in per unit can be	expected by	y storing h	ieat energy i	n			
thermal sto	thermal storage tanks with the use of night time electricity.									
Examples of Application										
Harumi Island,	Harumi Island, Triton Square									

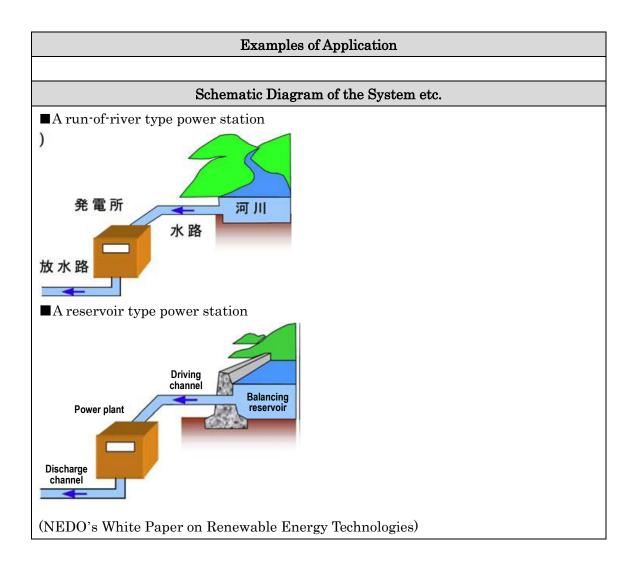

(10) Waste heat from sewage treatment plant

Classification	ı of		Low	App	licability	as per	
Measures	Measures			Тур	e of		
		Measure	Town				
Supply/	Major	Minor		Ι	Π	III	IV
Demand	Classi-	Classi-					
	fication	fication					
Supply side	Untapped		Using Waste		Н	М	\mathbf{L}
	energy		heat from				
			sewage				
			treatment				
			plant				
	0	verview of M	easures and Appli	cability			

- As sewage water temperature is lower in summer and higher in winter than the atmospheric temperature, it will contribute to improving energy efficiency both as a coolant of heat pumps used in heat source equipment for cooling and as a heat source water of heat pumps for heating/hot-water supply.
- Using sewage water heat means the reuse of city waste heat, and it may be regarded as a recycling-oriented city energy system.
- It is necessary to pay attention to the balance between the heat supply source and the heat load from cooling/heating as well as hot-water supply, considering such regional conditions as the amount of sewage water, daily/seasonal variations in temperature and interfusion of snow-melt water. In addition, as heat demand also varies in terms of time period and season, this variation should be reduced by installing heat storage tanks.
- Moreover, it requires corrosion-resistant treatment of the related equipment based on the water quality, as well as strainers for removing foreign matters contained in the sewage water.

Expected CO2 Reducing Effect

• It is expected that CO2 will be reduced by means of improving energy efficiency in cooling/heating and hot-water supply in the relevant communities.


(11) Hydroelectric power generation

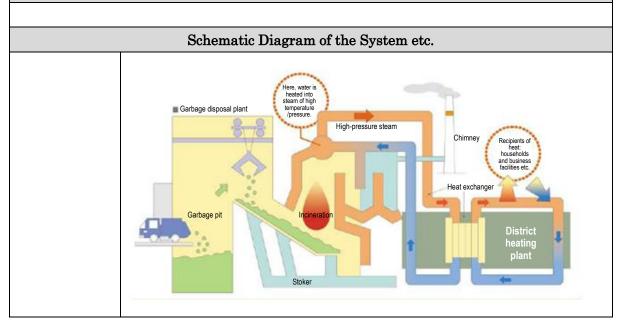
Classification	n of		Low Carb	on	Aŗ	oplicabi	lity as p	per
Measures			Measure		Type of			
					Town			
Supply/	Major	Minor			Ι	Π	III	IV
Demand	Classi-	Classi-						
	fication	fication						
Supply side	Renewab		Hydroelectric	power		\mathbf{L}	L	М
	le energy		generation	(Small				
			and middle so	ale)				
		Overview of	Measures and	Applicab	ility			

- In principle, introduction of renewable energy power generation systems will lead to the reduction of carbon dioxide emissions etc. However, because of the fact that the cost and efficiency are dependent on such factors as the climate condition and administrative support measures in the relevant regions, and the generated amount of electricity is highly variable, it is a common practice to combine hydroelectric power with large-scale power generation and energy storage systems.
- Small and middle scale hydroelectric power generation generally makes use of water without storing it. Depending on the method of water use and the structure for gaining a head of water, several forms exist.
- Small and middle scale hydro power generation carries a heavy burden of electrical equipment costs. It takes a greater share of the total construction cost in comparison to large scale hydro power generation.
- In addition to the systems utilizing the nearby rivers, the cases can be assumed where hydroelectric power generation systems are installed as a form of agricultural drainage facility in farming villages.

Expected CO2 Reducing Effect

• It is expected that CO2 will be reduced by means of increasing electricity generation from renewable source.

(12) Waste heat from incineration plants

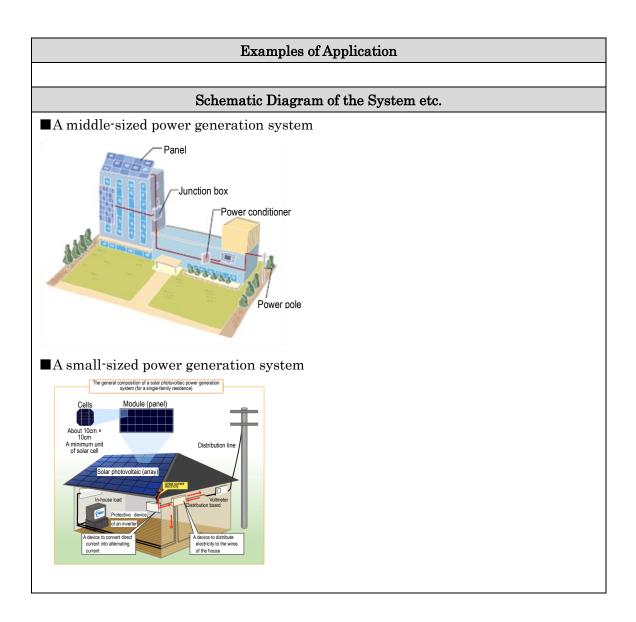

Classification	n of		Low	App	licability	v as per			
Measures			Carbon	Type of					
			Measure	Town					
Supply/	Major	Minor		Ι	п	III	IV		
Demand	Classi-	Classi-							
	fication	fication							
Supply side	Untapped		Using Waste		н	М	М		
	energy		heat from						
			incineration						
			plants						
	(Overview of Measures and Applicability							

- The exhaust gas from refuse incineration at garbage disposal facilities has a high temperature and it can be utilized for power generation and as an infrastructure for heat supply.
- As garbage disposal facilities are often built away from residential areas, it is necessary to develop a sitting plan which facilitates heat use, on the basis of garbage disposal facilities as an infrastructure for energy supply.

Expected CO2 Reducing Effect

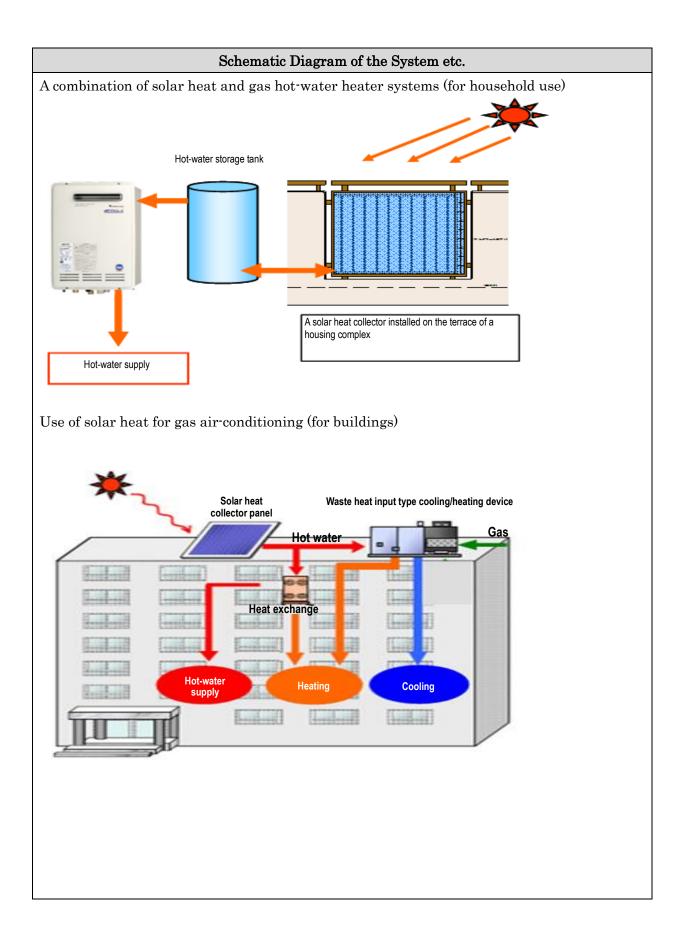
• It is expected that CO2 will be reduced by means of improving energy efficiency in each region through power generation from unused energy and utilization of surplus waste heat.

Examples of Application

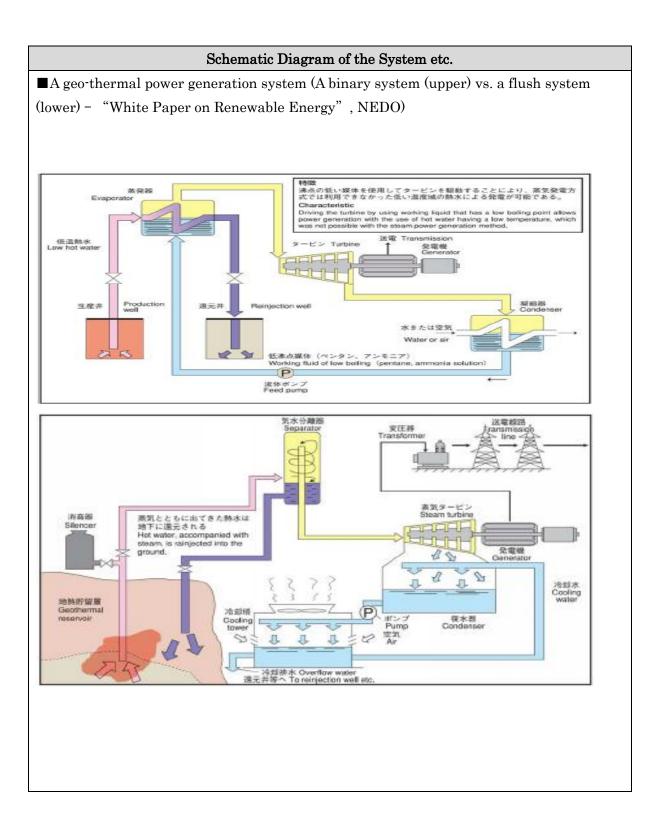

(13) Solar power generation

•

Classification	Classification of			App	licability	v as per	
Measures			Carbon	Type of			
			Measure	Town			
Supply/	Major	Minor		Ι	п	III	IV
Demand	Classi-	Classi-					
	fication	fication					
Supply side	Renewable		Solar power	М	М	Μ	М
energy			generation				
	(sures and Appli	cability				


- In principle, the cost and efficiency of renewable energy power generation depend on such factors as the climate condition and administrative support measures in the relevant regions. Since the generated amount of electricity is highly variable, it is a common practice to combine the renewable power generation systems with conventional power generation and energy storage systems.
- Solar photovoltaic power generation is a collective term for technologies using semiconductors to convert light energy into electricity. Semiconductors (solar cells) can be classified into the types using multi-crystalline silicon, thin film silicon, chemical compound/organic etc. Solar power generation ranges from large-scale power generation systems to middle- and small-sized power generation systems for industry and household use.
- Compared with other renewable energy power generation systems, this system has an advantage in terms of the ease of installation and maintenance, and no conditions for installation. On the other hand, it has the highest introduction cost per unit of electricity generated.
- A certain amount of energy output can be expected where solar insolation is obtained, and this system has a wider applicability than solar heat power generation or wind power generation systems.

	Expected CO2 Reducing Effect
•	It is expected that CO2 will be reduced by means of improving energy efficiency in
	electricity/heat generation in the relevant communities.

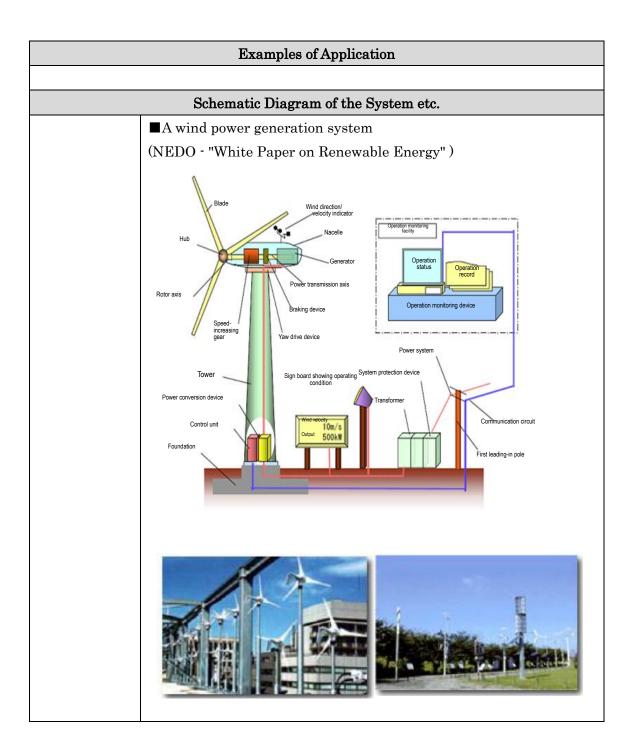

(14) Solar heat

	ı of	Low	Applicability as per						
Measures			Carbon	Type of					
			Measure	Town					
Supply/	Major	Minor		Ι	II	III	IV		
Demand	Classi-	Classi-							
	fication	fication							
Supply side	Renewable		Using Solar	М	М	М	М		
	energy		heat						
		Overview of M	easures and Ap	plicability					
• Utilizing	the natural er	nergy of solar h	eat for hot-wate	er supply a	and cooli	ng/ heat	ing makes		
it possible	e to promote e	energy saving a	nd CO2 reducti	on in buil	lings.				
-	-	00	ld and commerc		8				
• Solar nea	it can be utiliz	a for nouseno	ia and commerc	hai use.					
		Expected	CO2 Reducing l	Effect					
Yearly gas	s consumption	-	CO2 Reducing l sions can be red		bout 309	% by usi	ng solar		
• Yearly gas heat.	s consumption	-	ç		bout 309	% by usi	ng solar		
heat.		and CO2 emis	ç	duced by a					
heat. (Based on an	average hous	and CO2 emis	sions can be ree	duced by a	ing com	plex; a t	rial		
heat. (Based on an	average hous	and CO2 emis	sions can be red	duced by a	ing com	plex; a t	rial		
heat. (Based on an	average hous	and CO2 emis	sions can be ree	duced by a	ing com	plex; a t	rial		
heat. (Based on an	average hous	and CO2 emis ehold of three f	sions can be rea family members heat collection	duced by a s in a hous area of 3n	ing com	plex; a t	rial		
heat. (Based on an calculation fo	average hous or a solar heat	and CO2 emis ehold of three f system with a Examp	sions can be ree family members heat collection	duced by a s in a hous area of 3n on	ing comj 1², instal	plex; a t	rial		
heat. (Based on an calculation fo	average hous	and CO2 emis ehold of three f system with a Examp	sions can be rea family members heat collection	duced by a s in a hous area of 3n on	ing comj 1², instal	plex; a t	rial		

(15) Geo-thermal power generation

Classification	n of	Low	Applicability as per						
Measures			Carbon	Type of					
			Measure	Town					
Supply/	Supply/ Major Minor I II III I								
Demand	Classi-	Classi-							
	fication	fication							
Supply side	Renewable		Geo-thermal		L	L	Μ		
	energy		power						
			generation						
	0	Overview of N	leasures and App	licability					
•Geo-therma	l power gener	ration is a col	lective term for po	ower gen	eration u	sing geo-	thermal		
energy. The	ere are two di	ifferent syste	ms to convert the	rmal ene	rgy into o	electrical	energy		
via steam t	turbines; a fla	ish and binar	y system.						
• Compared	with other re	newable ener	rgy generation sys	stems, th	is systen	n has an			
advantage	in terms of en	nergy stabilit	y, but it is necessa	ary to tal	ke accour	nt of			
environme	ntal risks (aiı	r pollution ca	used by releases o	of hydrog	en sulfid	e etc.).			
\cdot The region	• The regions where this system can be applied are limited to those which can meet the								
criteria, na	umely, a specif	fied amount o	of geo-thermal ene	ergy reso	urce exis	ting und	er the		
ground wh	ich can be dev	veloped at a r	easonable cost.						
		Expected	CO2 Reducing E	ffect					
• It is expect	ed that CO2	will be reduce	ed by means of usi	ing clean	energy f	for			
electricity/	heat generati	on in the rele	evant communities	3.					
		Exam	ples of Application	ı					

(16) Wind power generation

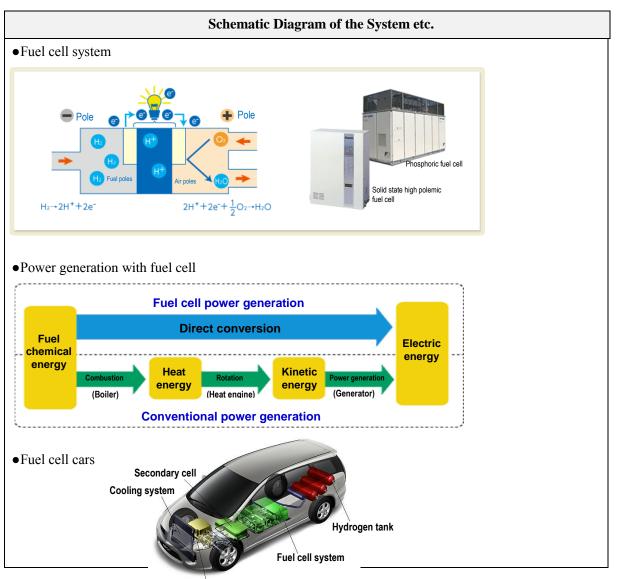

Classification	of	Low	Applicability as per				
Measures		Carbon	Type of				
			Measure	Town			
Supply/ Major Minor				Ι	Π	III	IV
Demand Classi- Classi-							
	fication	fication					
Supply side	Renewable		Wind power		L	L	М
	energy		generation				
		asures and App	licability				

• Wind power generation is a collective term for technologies used to generate electricity by means of capturing wind energy with rotor blades and transferring the rotational energy to generators. This power generating system has various types depending on the structure of blades and size, but it can be roughly classified into large-scale wind power generation linked to the grid and middle- or small-scale wind power generation intended to be used within each region.

- Compared with other renewable energy generation systems, this system has an advantage in terms of low introduction cost per unit of electricity generated. On the other hand, it has a disadvantage of low energy efficiency in case of limited geographical conditions (dependent on wind conditions) or small-scale power generation.
- As wind energy increases in proportion to the wind velocity, it is highly probable that this system can be applied in regions with favorable wind conditions.

Expected CO2 Reducing Effect

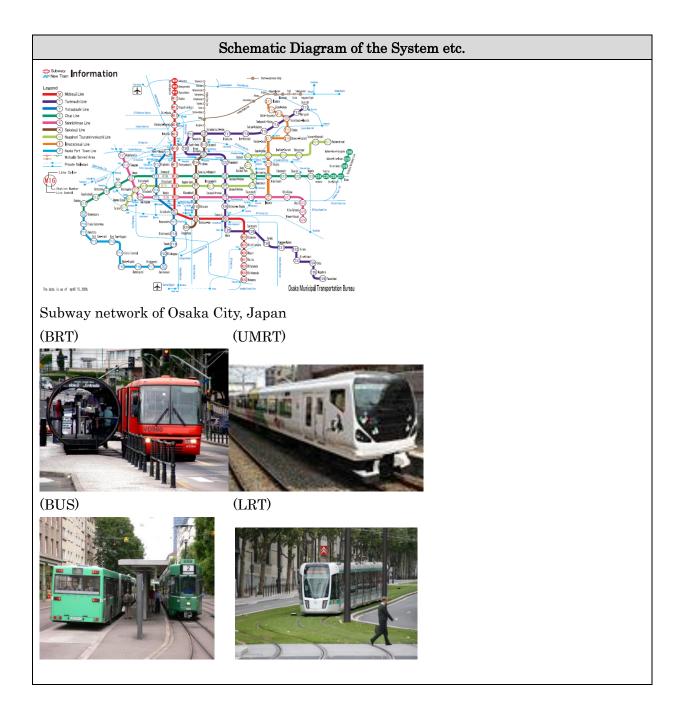
• It is expected that CO2 will be reduced by means of using clean energy in electricity generation in the relevant communities.



(17) Biomass Power Generation

Classification	of	Low	Applicability as per						
Measures			Carbon	Type of					
			Measure	Tow					
Supply/	Major			Ι	II	III	IV		
Demand	Classi-								
	fication								
Supply Side	Renewable		Biomass		L	L	М		
	Energy		Power						
			Generation						
	Ov	erview of Mea	asures and App	olicability	7				
• Biomass p	ower generatio	on is a collecti	ive term for po	wer gene	ration te	chnologie	es using		
biomass (a	animal/plant re	sources and o	organic wastes	from the	ese resour	rces) for	direct		
incinerati	on, heat decom	position, fern	nentation etc. 7	The form	of bioma	ss can be	e roughly		
classified	into unused res	sources (fores	st resources, ag	ricultura	l residue	es etc.), w	raste		
resources	(building mate	rials, paper n	nanufacturing	material	s, livesto	ck manu	re, food		
residues e	tc.) and produc	tion resource	es (pasture gras	ss, water	plant, ve	egetable	oil etc.).		
Suitable le	ocations vary w	with the type of	of resources be	cause bio	mass ne	eds stabl	e supply.		
		Expected	CO2 Reducing	g Effect					
• CO2 will b	e reduced thro	ugh renewab	le power gener	ation.					
		Example	es of Applicatio	n					
	Sc	hematic Diag	gram of the Sys	stem etc.					
■A biomass po	ower generation	n system (NE	CDO)						
A high-efficiency g	as conversion power ger	eration system using	sewage sludge						
Sewage plant	_		_						
	Sludge treatment facility Dehydrated sludge Gasification power generation								
s									

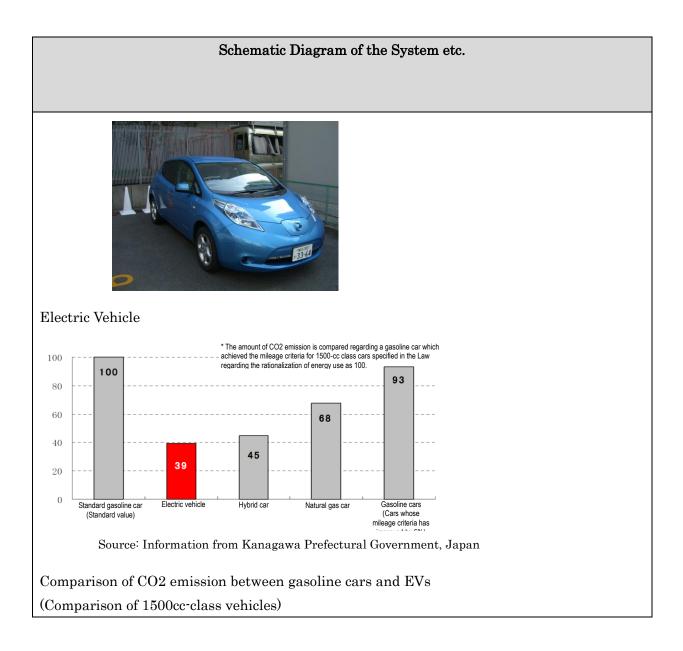
(18) Fuel cell


Classification	n of	Low	Applicability as per					
Measures			Carbon	Type of				
			Measure	Town				
Supply/ Major Minor			1	I	п	ш	IV	
Demand	Classi-	Classi-						
	fication	fication						
Supply side	Buildings	Equipment	Fuel cell	Н	н	М	М	
		installed						
		At facilities						
		Overview of Me	easures and App	licability				
• Electricity	is generated by	hydrogen taken o	ut of natural gas,	methanol,	etc. and ox	ygen from	ı air,	
while the h	neat concurrent	y generated is coll	ected as steam or	hot water.	This is a h	ighly effic	ient	
		electricity is gene						
reaction.	cration because	cleetherty is gene	face uncerry not	in nyuroger	i using an	cicculocito	mear	
			. 1 11.00					
		various uses and sy						
• It also con	tributes to the r	eduction of peak ti	me power consur	nption and	the improv	ement of	energy	
security.								
		Expected C	CO2 Reducing E	ffect				
• Because p	ower is generat	ted as hydrogen an	d oxygen react to	each other	, water is t	he only su	bstance	
that is for	med. Although	carbon dioxide (C	O2) is generated	while hydro	gen is bei	ng produce	ed, its	
generated	amount is less	while using the ide	entical volume of	electricity	and heat, t	hanks to th	ne high	
overall eff	ficiency.							
• For an ord	linary househol	d of four people li	ving in a house, C	CO2 can be	reduced by	y approxin	nately	
	-	o the conventional	-		-		·	
			les of Application					
For buildings, automobiles, personal computers, etc.								
		, r						

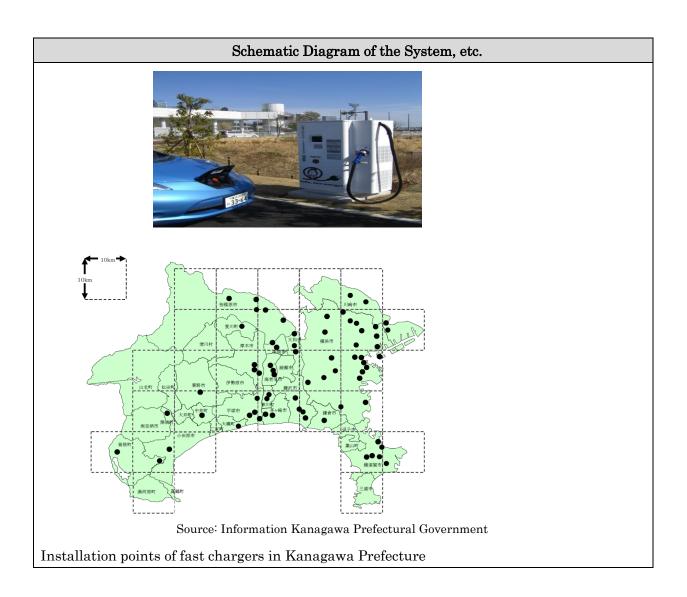
Driving system

(19) Transportation (Establishment of public transportation network)

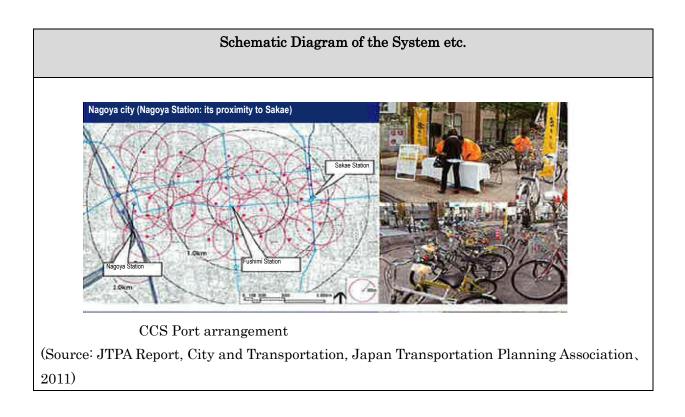
Classification of			Low	A	pplicab	ility as j	per	
Measure	Measures			Т	ype of			
			Measure	Т	own			
Supply/	Major Classi-	Minor		I II III IV				
Demand	fication	Classi-						
		fication						
Demand	Transportation	Public	Well developed	М	Μ	Μ	X	
	system	transportation	Public					
		systems	Transportation					
			Network					
	Ov	erview of Measu	res and Applicabil	lity				
• There a	re a variety of pul	olic transportatio	on systems in citie	es. Ty	pical tr	ansport	ation	
systems	are subways, LR	T, BRT, route bus	ses, etc.					
• By estab	blishing a public t	ransportation ne	etwork which com	bines o	optimal	public		
transpo	rtation systems ba	ased on the city s	size and the dema	nd for	transpo	ortation,	low	
carbon v	urban life and sus	tainable cities m	ust be realized th	rough	the use	of publ	ic	
transpo	rtation with less (CO2 emission.						
		Expected CO2	Reducing Effect					
• As peop	le use public trans	sportation system	ns which emit less	s CO2 t	than au	tomobile	es do, its	
develop	development contributes to curbing the amount of CO2 emission in cities.							
		Examples o	f Application					
• There a	• There are a number of examples of well developed public transportation network in cities							
in the APEC region.								


Classificatio	on of		Low Carbon	A	pplicat	oility a	ls per	
Measure	Measures			Type of				
				Т	own			
Supply/	Major Classi-	Minor		I	п	ш	IV	
Demand	fication	Classi-						
		fication						
Demand	Transportation	Public	Intra-district	Н	н	н	L	
	system	Transportation	Transportation					
		System (Bus,	system					
		LRT)						
	Overview of Measures and Applicability							
• The LR	T, BRT, and buses	s are the public tr	ansportation system	s that	offer se	ervices	s in a	
part of	city area such as	CBD (Central Bus	siness District). Th	e estab	olishme	ent of t	those	
systems	s would serve to in	nprove convenien	ce for the people wh	o trave	l in the	e area.		
Althoug	gh the carrying ca	pacity is smaller	than that of mass tra	anspor	tation	systen	ns such	
as subw	vays, they can be o	established with l	ess cost and the dist	ance b	etween	stops	can be	
set shor	rter as well, comp	ared to subways.						
		Expected CO	2 Reducing Effect					
• As trave	eling by local pub	lic transportation	becomes more conve	enient,	people	begin	to use	
public t	ransportation sys	tems which emit	less CO2 compared t	o cars.	There	fore th	nese	
measur	es are effective in	curbing the amo	unt of CO2 emission	from i	nside c	ities.		
		Examples	of Application					
• There a	re a number of ex	amples in cities i	n the APEC region.					

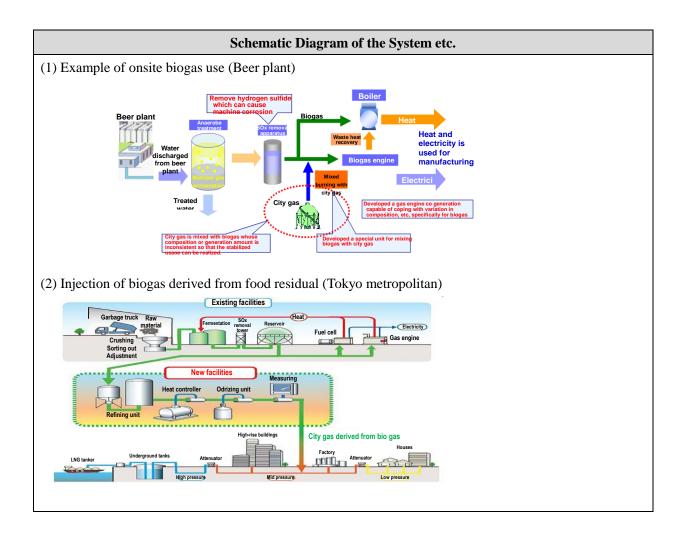
(20) Local Transportation System (Bus, LRT, etc.)


(21) Electric Vehicle

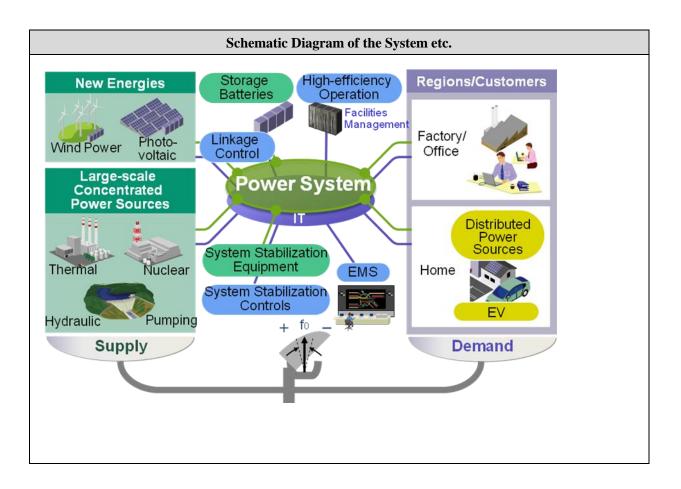
Classification	n of		Low	App	licabili	ty as per	•	
Measure	5		Carbon	Type of				
			Measure	Town				
Supply/	Major Classi-	Minor		и п п г				
Demand	fication	Classi-						
		fication						
Demand	Transportation	Vehicles	Electric	М	М	М	М	
Side	system		Vehicle (EV)					
	Overview of Measures and Applicability							
• The wide	e use of electric ve	ehicles will be p	promoted throu	gh impro	ving t	he envi	ronment	
for the u	sage such as inst	alling fast-char	gers, and publi	ic relation	ns activ	ity for th	ne EVs	
environr	nental performan	ce over convent	cional cars, etc.					
		Expected C	O2 Reducing E	ffect				
• EVs don	't run on fossil fue	el such as gasol	ine unlike exis	ting auto	mobiles	s, and th	erefore,	
they ser	ve to reduce the a	mount of CO ₂ e	mission from t	raffic.				
	Examples of Application							
Introduc	• Introduction of EVs has already started in some economies in the APEC, even though it is							
in a small scale and for the experimental purposes. Recently, commercial production of								
EV has s	EV has started for the use of general public.							


(22) Fast charger, Small-size storage battery

Classification	n of		Low	Ap	plicabil	ity as p	er		
Measure	5		Carbon	Type of					
				To	wn				
Supply/	Major Classi-	Minor		I II III IV					
Demand	fication	Classi-							
		fication							
Demand	Transportation	EV-related	Fast charger,	Μ	Μ	Μ	М		
	system	hardware	Small-size						
			storage						
			battery						
Overview of 2	Overview of Measures and Applicability								
• Fast cha	rgers for electric	vehicles will be	e installed takin	g their	usage s	cenes ar	nd driving		
ranges in	nto account.								
• The intr	oduction of fast cl	nargers will be	promoted by gr	asping	busines	s opport	unities		
such as o	city redevelopmer	nt projects, etc.							
		Expected C	CO2 Reducing E	ffect					
Compare	ed to gasoline cars	s, the driving r	ange of EVs is li	imited (approxi	mately	160km		
with one	e full-charge), whi	ch exerts a sig	nificant influenc	e on th	e sales o	of EVs. A	As fast		
chargers	s spread and smal	l-size storage k	oatteries are imp	proved,	the diff	usion of	EV will be		
boosted,	boosted, which will, in turn, contribute to the reduction of CO2 emission from traffic.								
	Examples of Application								
• Installat	tion has already s	tarted at park	ing lots, gasoline	e station	ns, and s	shoppin	g malls,		
etc.	etc.								


(23) Community Cycle Sharing

Classification	n of	-	Low	Ap	plicabil	ity as po	er	
Measure	5		Carbon	Ту	pe of			
			Measure	To	wn			
Supply/	Major Classi-	Minor		I II III IV				
Demand	fication	Classi-						
		fication						
Demand	Transportation	Public	Community	н	Н	н	L	
side	system	transportation	Cycle					
		systems	Sharing					
	Ove	erview of Measur	es and Applica	bility				
The com	munity cycle or b	ike-sharing (here	einafter, the CC	CS) refe	rs to a s	ystem o	f sharing	
bicycles	where users can j	pick-drop a bicycl	le at their conv	enience	. This sy	ystem a	ims at	
improvir	ng the use of bicyc	cles as an alterna	tive to cars, an	id addro	essing th	ne probl	ems of	
illegal pa	arking or abando	ned bicycles.						
• By insta	lling CCS ports n	nainly around rai	lroad stations	and pul	olic facil	ities, th	is system	
is expect	ed to take effects	in making up for	r the unavailab	ility of	public t	ranspor	tation	
infrastru	acture and improv	ving accessibility.						
		Expected CO2	Reducing Effec	t				
With respect	to the NUBIJA (the CCS of Chang	gwon city, Sout	h Korea	a), about	: 45% of	users in	
their 30s and	l older have repor	rtedly switched fr	rom cars to bicy	veles for	commu	ting, af	ter one	
year of the C	CS introduction (source: NUBIJA	HP). The appro	opriatel	y introd	uced CO	CS will	
prompt peop	le to switch from	automobiles to bi	icycles, and it is	s expect	ted to ta	ke effec	t in	
reducing CO	reducing CO2 emission in the transportation sector.							
	Examples of Application							
The CCS por	ts will be installe	d at railroad stat	tions, public fac	cilities,	parks, c	ommerc	cial	
facilities, offi	facilities, office buildings, apartment complexes, and so on. Users can pick-drop a bicycle							
freely. Regist	ration required.	IC cards will be in	ntroduced for p	aymen	t.			


(24) Garbage

Classification of			Low	Appli	cability	v as per		
Measures	1		Carbon	Туре	of			
			Measure	Town				
Supply/	Major	Minor		I II III IV				
Demand	Classi-	Classi-						
	fication	fication						
Supply side	Renewable		Biogas					
	energy		injection into					
			City gas					
			combustion					
		Overview of M	easures and Appli	icability				
• Excessive	biogas generat	ed from sewage slu	udge or food waste	, etc. is put	to an eff	ective or	nsite use as	
the fuel fo	r power genera	tion or automobile	s. If generated biog	gas or electr	icity stil	l remains	s after	
onsite use,	, it would be po	ssible to supply en	ergy (biogas, co-g	eneration po	ower) to	outside.		
• Not only t	hese measures	contribute to energ	y conservation and	l CO2 reduc	tion, bu	t also the	ey help	
make the b	best use of and	recycle the local bi	iogas resources, su	ch as sewag	e sludge	or kitch	en garbage,	
for a long-	term in a stable	e manner						
		Expected (CO2 Reducing Eff	fect				
• CO2 can b	e drastically re	duced by using car	rbon-neutral biogas	S.				
• (Example)	Injection of bi	ogas into city gas o	conduits: Approx.	1,830 tons/y	ear			
• (outlined i	n below: case e	example of Tokyo 1	metropolitan)					
		Examples of	Application (In Ja	apan)				
Biogas ger	neration Tok	yo metropolitan, Y	okohama city, etc.	(About 30 s	ewage ti	reatment	facilities,	
etc.)								
Biogas aut	Biogas automobiles Kobe city, Ueda city							
• Injection of	of biogas into c	ity gas conduits	Kobe city, Tokyo	metropolita	n			

(25)Smart Grid

Classification	ı of		Low	Appli	cability	v as per		
Measures	5		Carbon	Type of				
			Measure	Town				
Supply/	Major	Minor		I II III IV				
Demand	Classi-	Classi-						
	fication	fication						
Supply/	Electric	Smart Grid	Smart Grid	Н	Н	Н	Н	
Demand	Power							
	System							
	Overview of Measures and Applicability							
sources suc with solar consumers energy con	 The supply side of electricity comprises large-scale power station and renewable energy sources such as wind and solar, which are unstable in nature. The demand side is equiped with solar cells and electric vehicle which act as distributed power sources, and the consumers are linked to the electricity supply system with the options on the selection of energy consumption structures. The electricity system is equiped with power stabilization facilities, which balance the 							
demand an	d supply on t	he realtime basi	is to maitain the	high qual	ity of el	ectricity	y supply.	
		Expected (CO2 Reducing Eff	fect				
 Expansion of the use of the renewable energy sources and distributed power supply through the system stabilization control Reduction of the overall emission of CO2 from electric power generation 								
	Examples of Application (In Japan)							

(26) Classification of Low Applicability as per Carbon Type of Measures Measure Town Ι Π IV Supply/ Major Minor III Demand Classi-Classification fication Community Η Н Н Demand Energy Community Η Management Energy Energy System Management Management System System (CEMS) (CEMS) **Overview of Measures and Applicability** • Community energy management system (CEMS) collects information from the demand-side energy management systems such as home energy management systems and building energy management systems, in a neighborhood, and optimizes the use of energy in the neighborhood. • CEMS also provide the supply side of electricity with such information as the configuration and state of devices and facilities in the neighborhood. **Expected CO2 Reducing Effect** Reduction of CO2 emission in a neighborhood • Reduction of CO2 emission from the concentrated power supply through the total • optimization of energy consumption in a neighborhood **Examples of Application (In Japan)** Schematic Diagram of the System etc. Energy supply/demand adjustments Efficient home, office building, EV within a region energy management Services targeted at each individual user Monitoring & operation of devices/facilities Added value services all region energy managemen me, building **Regional service provider** HEMS Home Community EMS BEMS Energy Center Management Building/Shop (CEMS) E١ Charging Center Social Infrastructure Provider

Power System