

THAILAND-EC COOPERATION FACILITY PHASE II (TEC II)

Smart/Intelligent Grid Development and Deployment in Thailand (Smart Thai)

Smart Thai Project: Key Results of the Programme

Alan Dale Gonzales Chairman, WADE THAI

21st June 2013 Pullman Bangkok King Power, Thailand

Materials will be available on WADE THAI website: http://wadethai.org/

Partners

Implementing Partner

World Alliance for Thai Decentralised Energy (WADE THAI) Partner

World Alliance for Decentralised Energy (WADE)

Associate Partner

Full Advantage Co., Ltd.

(FA)

Total duration of the action

- Duration: 30 Months (Jan 2011 June 2013)
- Total Budget: EUR 255,000
- EU Contribution: 72%

General Objectives

 Improvement of the sustainable economic and social development of Thailand through the efficient delivery of sustainable, economic and secure electricity using Smart/Intelligent Grid systems based on EU models and technologies

Specific Objectives

 Transformation of the generation, transmission and distribution network of Thailand through the enhancement of the capacity of Thai private and public sector organisations in introducing and promoting Smart/Intelligent Grid systems thereby contributing to the national development goals of Thailand in the area of environment, climate change and energy security

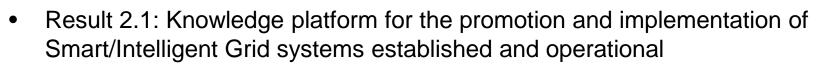
Component 1: Mainstreaming Smart/Intelligent Grid European Unit systems in the generation, transmission and distribution activities in Thailand

- Result 1.1: Supporting policies and regulatory frameworks for the adoption of Smart/Intelligent Grid systems strengthened
 - Brief report on existing policies in Thailand
 - Brief report on EU policies and experiences (France, Germany, Netherland, UK)
 - Analysis of barriers and policy recommendations

	2010	2015 20	30 2050	2010	2015 2	30 2050	Other developing Asia	2010	2015	2030 20	50 2010		2030	2050	Smart Grids	
ca ricity-presentani (TWN)	674	798 1.2	00 1.958	676	and the second second	88 1816	Einstricky generation (70%)	1 052		2 517 3 9	1054		2.174	3.011		
euroble generation	0.2		1.6 4.2	0.3		9.5 24.9	16 scanable generation	0.1	0.3		3.2 0.0	0.5		19.5		
mentilian councity (CW)	150		73 360	149		193 575	Generation copacity (CW)	258	314	564	259	307	\$46	881		-
V/PHIV sales (million)	0.0	0.0 0	0.0 0.0	0.0	0.0	0.4 2.1	EV/PhDV sales (millions)	0.0	0.0	0.0	0.0 0.0	0.0	0.8	8.7	Regional smart grids CO ₂ emission reduction potential	Direct reductions: energy savings in continuous commissioning of servic deployment of energy efficiency prog
hina -		Raseline			RUT Ma		OE CD Europe		Baselle	-			it Map		Smart Gnish have the potential to reduce global CO, eminians by over 2 globatomes proves the 2850	and direct feedback on energy usage Enabled reductions: greater integration
ectricity generation (TWh)	3.941	5 622 8 8	47 12.470	3944	5.436 7	22 10 231	Electricity generation (7Wh)	3 423	1716	4 398 51	3 434	3 665	4 182	4 343	Recommiss in transition	and facilitation of EV and PHEV deploy
variable generation	0.9	1.6 1	5.0 4.2	0.8	2.9	0.3 15.6	% vomatile generation	5.2	9.0	15.8 1	8.4 5.2	9.4	23.0	26.7	DECD Europe 0.40	
emenation cospacity (CiW)	869	1215 19	36 2 276	868	1 132 1	06 2.424	Concention copically (City)	912	1 005	1 162 1	531 915	989	1 266	1 400	World 0.45	All and the second
v/PHEV aples (millors)	0.0	0.0	0.0 0.0	0.0	0.4	1.7 26.3	tV/PhtV sales (milium)	0.0	0.0	0,0	0.0 0.0	0.2	5.4	. 9.6	1.20 O(CD North America 2010)	and the second se
entral and South America		Baseline			BLUE May		United States	1	Baselin	4		1 811	/E Map	1	6-60 <u>\$</u> 0.00	
lectricity generation (TWh)	1 071	1247 17	45 2 243	1 075	1 234 1	68 2 3 31	Enciroste generation (78%)	4.219	4 526	5 277 5	901 4 2 2 9	4 390	4 826	4 918	100 0 00	
i variatké generatikan	0.2	0.6	2.7 3.7	0.2	0.7	6.4 17.5	16 variable generation	2.0	4.3	7.2	8.6 2.0	4.3	12.2	21.0		
entration capacity (GW)	240	276 3	91 483	240	273	186 784	Consensition cagnetity (CW)	1 074	1 096	1239 1.0	556 1 074	1 075	1 131	1 497	0.00 - 2015 2010 2050	0.40 m China
W/PHEV sples (million)	0.0	0.0	0.0 0.0	0.0	0.0	1.2 8.7	PV/PHEV sales (mitum)	0.0	0.0	0.0	0.0 0.0	0.Z	5.2	10.6	0.00	1 2.00
conomies in transition		Ruselitur			ALUE May		Other DECD North America	1	Estevio			815	T Map		Note Middle fast	
lectricity generation (TWA)	1.635	1.865 2.1	75 \$ 107	1 618	1850 2	101 3 001	Electronic grommon (7Wh)	892	989	1244 1	743 895	953	1 110	1.670	2015 2000 72650 0.45	9
i variable generation	0.1	0.4	2.9	0.1	0.4	5.5 11.0	16 veriable generation	0.2	0.5	3.4	4.3 2.7	5.0	17.0	23.9	- 0.0- 1	J 0.10-
Semmation coprisity (GW)	416	443 5	23 865	416	425	105 919	Generation capacity (CW)	194	211	263	354 193	198	261	538	0.60	
1/7HEV aatas (miliam)	0.0	0.0	0.0 0.0	0,0	0.0	1.1 3.9	EV/PME# sales (millions)	0.0	0.0	0.0	0.0 0.0	0.0	1.0	2.8		2015 2010 2010
dia		Baseline			SELIE May		OECD Pacific		Baselin			BLD	Æ May		0 40 - Central and South America	Of CD P
ecustry generation (TWh)	934	1 271 27	37 4 067	904	1 055 1	186 3.762	Extents generative (78%)	1 807	2.007	2 296 2	767 3 810	1 959	2 055	2 418	0.40	0.40 1
	2.6	3.6	1.0 2.7	2.5	3.9	7.5 10.1	% variable generation	0.7	1.2	4.0	5.3 0.7	1.4	8.6	20.7	2010 2030	- in the second
N variable generation	200	263 5	71 695	201	252	140	Geventation copacity (CBV)	429	496	.511 (550 424	489	542	750	2 0.30 Africe Other developing 65	K
		0.0	0.0 0.0	0.0	0.0	3.2 22.6	EV/INEE sales (wittons)	0.0	0.0	0.0	0.0 0.0	0.2	2.3	4.4	2 0.20 0.40 0.40 0.40	0.00
enutration rapporty (GW)	0.0														0 0.10 - P 0.30 - P 0.30 -	
k carlable generation Semanor capocity (GW) 3:/HOV asias (militan) Adddle East	0.0	dantes			ALLE MAN		World	1	Baselin	•		810	iE Map	14	0.10- g 0.10-	S 0.10
eneration rapocity (GW) 3:79(IV units (million) Addille East	0.0		56 2.726	795		177 2.634	World Bechair generation (78%)	20.440	Baratia 24 352 3		20.486		A DUCK	40 135		3 0.10 -
enutation tapooly (GW) 9/990V astes (milion)		4000000 967 1.6	56 2.726 1.8 4.1	795 0.0	946 1		Fundamental in	20 440 2.1	CONTRACTOR OF THE OWNER	4 292 45	20 486 6.1 1.7	23 759	29 939	40 135 18.7	8 0.00 - 2015 2010 2010 - 0.00	3 0.10 -
emmune rapocity (GW) 1979(IV astas (millow) 1928(In East - 1928(In East -	792	400000 967 16	1.8 4.1		946 1 0.4	077 2.634	Electricity generation (7WR)	2.1	24 352 3 3.1	4 292 45 6.2		23 759	29 939 11.1	18.7 11 545	5 000 5 000 5 000 5 000	0.00 2015 203

Component 1: Mainstreaming Smart/Intelligent Grid *European Union* systems in the generation, transmission and distribution activities in Thailand (cont.)

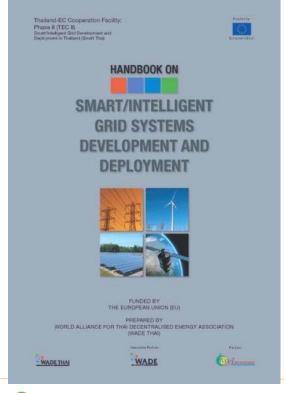
- Result 1.2: Understanding of relevant government agencies on the application of Smart/Intelligent Grid systems enhanced through dialogues with EU counterparts
 - List of relevant Thai and EU agencies and their representatives
 - Trip to EU (Germany, Belgium, France) and dialogues completed with participants from EGAT, PEA, MEA, EPPO, ERC, and Senate



Component 2: Capacity building, knowledge management and institutional development

- Smart Thai Project micro-Website (linked from WADE THAI website)
- Knowledge platform / Management Information System
- Materials and reports developed under Smart Thai projects are publicly available on Smart Thai website

Funded by:


European Union

Component 2: Capacity building, knowledge management and institutional development (cont.)

- Result 2.2: Handbook on Smart/Intelligent Grid systems development and deployment, including EU best practices, completed and disseminated
 - Handbook on Smart/Intelligent Grid Systems Development and Deployment

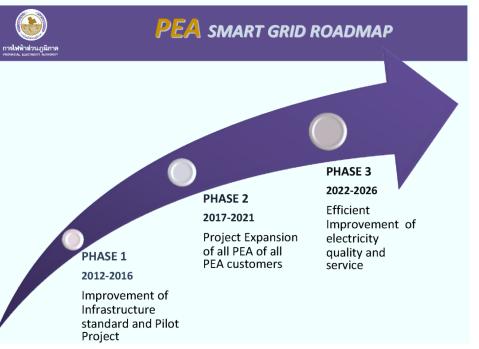
Part I: Introduction to Smart Grid Part II: Smart Grid Technologies Part III: Smart Grid Barriers, Strategies and Opportunities Part IV: Case Studies on EU Best Practices

- Handbook will be available in hard copy and CD-ROM to all relevant stakeholders i.e. EGAT, PEA, MEA, EPPO, DEDE, ERC.
- Handbook in soft copy will be publicly available on WADE THAI website: <u>http://wadethai.org/</u>

Component 2: Capacity building, knowledge management and institutional development (cont.)

- Result 2.3: Capacities of relevant public and private organisations on Smart/Intelligent Grid systems developed through workshops, training, corporate exchanges, and public-private partnerships
 - A series of five (5) training-workshops:
 - Smart Grid: Experiences and Benefits
 - Energy Storage and Transmission Technologies for Smart Grid
 - Smart Grid: Metering and Communication
 - Smart Grid: Policy, Services and Applications
 - Pilot Project Simulation Model and Implications
 - Two (2) corporate exchanges
 - Network Operation & Management;
 - Electric Vehicle (EV) and Charging Stations;
 - Advance Metering Infrastructure (AMI);
 - Information and Communication Technology (ICT)
 - Vision to Smart Grid Deployment to 2050; Smart Grid in EU
 - Smart Grid: Role of Regulators and Regulatory Frameworks

Component 3: Supporting the introduction of pilot European Union Smart/Intelligent Grid systems


- Result 3.1: Technical and economic feasibility of implementing Smart/Intelligent Grid systems on a pilot basis, including CDM potential, established
 - Feasibility study investigated the range of potential technical solutions and assessed the economics of implementing the Smart Grid system in the selected pilot area of Pattaya City (using the results of the computer simulation model (Result 3.2))
 - Brief report on GHG mitigation (using the results of the computer simulation model (Result 3.2))

Pattaya City Smart Grid Development Project

Key activities:

• Installation of Advanced Metering Infrastructure (AMI) – 118,636 units of single-phase and three-phase meters

- IEC61850 Substation Development
- Feeder Remote Terminal Unit (FRTU) Installation
- Mobile Workforce Establishment
- Rooftop Photovoltaic (PV) Installation
- Energy Storage Installation
- Charging Station Installation
- Home Automation

Smart Thai Feasibility Study: Selected pilot area

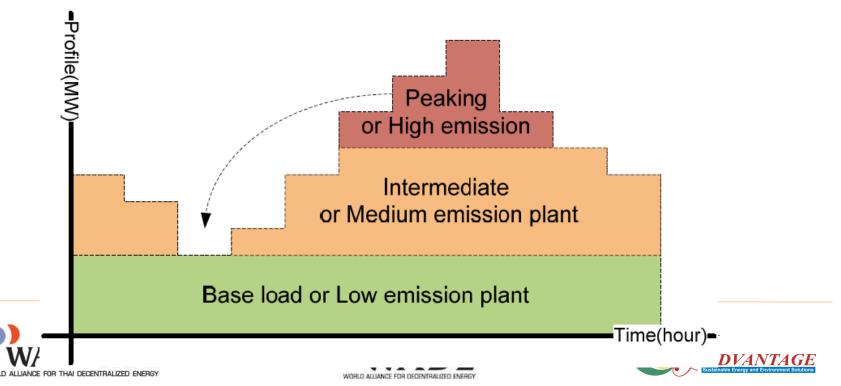
- Desk research has been conducted to identify potential candidate areas for the selection of the pilot case for the simulation modelling and feasibility study.
- PEA Smart Grid Roadmap has chosen Pattaya city in Chonburi province as one of the first pilot areas for their AMI/Smart Grid project.
- The project has decided to be consistent with PEA's plan and has selected Pattaya city to use as the pilot area within this project, to eventually provide beneficial inputs to the first AMI/Smart Grid pilot project.

Smart Thai Feasibility Study: Key contents

- Technical Overview and Analysis
- Financial Analysis
- Environmental Analysis: GHG Mitigation
- Risk Assessment
- Recommendations

Technical Overview and Analysis: Key contents European Union

- In order to limit the scope of Smart Grid technology, the technical review is based on the PEA proposed pilot project in Pattaya City.
- The review investigates the range of potential technical solutions, benefits, and challenges.
- Components of the FS include:
 - Smart Meters (Approx. 100,000)
 - Distribution Feeder Automation (Feeder Remote Terminal Unit)
 - Other supporting infrastructure
 - IEC 61850 Standard Implementation



Environmental Analysis: GHG Mitigation

Demand load curve:

- The peak could potentially be decreased due to the application of the smart systems
- These peak operating plants, such as diesel engine power plant or diesel gas turbines, normally have higher emissions.
- By shifting the peak demand to the valley period, the intermediate plant, which normally runs in less polluting fuel, is carrying those shifted load.
- The amount of emission is then reduced

Financial Analysis: Concept

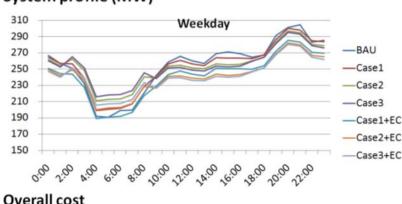
- The financial model was integrated into the simulation model to determine the financial profitability of the proposed pilot project.
- The financial analysis examines the investments made against the operating revenues and costs generated by the project.
- The financial model was developed to detail the annual financial performance over its entire project life.
- Revenues from the smart systems would come from two sources:
 - savings in investment such as capacity investment, transmission and distribution
 - savings on operations and maintenance and fuel consumption such as generation O&M costs, generation fuel costs, and feeder O&M costs
- Based on assumed consumer uptake and behavioral shift, financial results indicate that the project could be a viable economic proposition.

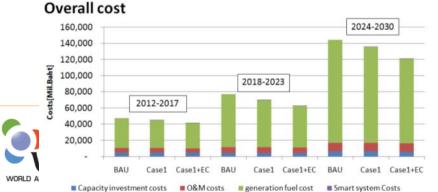
Risk Assessment

- Future Proofing
 - Smart Grid is a new technology, which is still evolving and is expected to continue to evolve for some time
 - Questions are raised on the proper timing and right technology.
 - What happens as the technologies mature? Will something better come along down the road? Will these technologies become stranded costs? Are there smart grid solutions that have not been identified yet?
- Need for New Smart Grid Personnel and Capacity Building for the Existing Personnel
 - Injecting new talented Smart Grid specialists and building capacity of existing personnel will be challenging and should be given high priority.

Other Risk Assessment

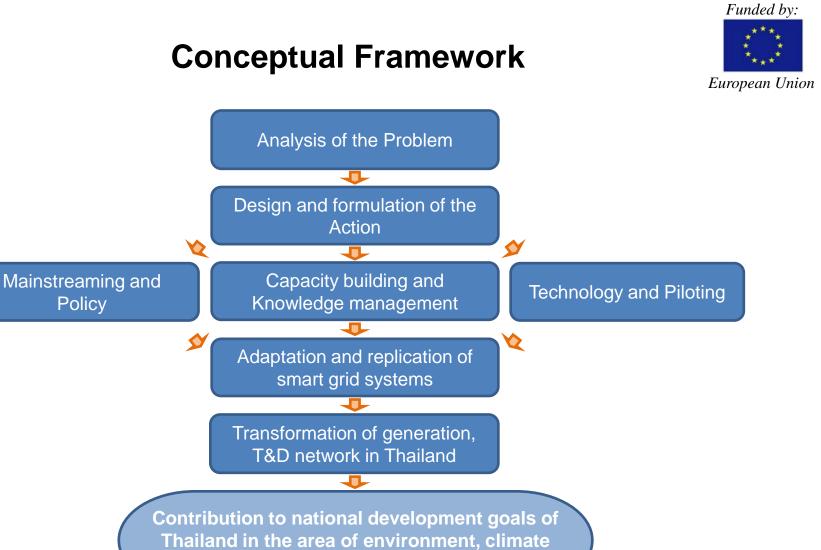
- Consumer Participation
- Generation and Storage Options
- Products, Services and Markets
- Power Quality
- Asset and Efficiency Optimisation
- Response to System Disturbances
- Resiliency to Cyber-attack, Terrorist Attack and Natural Disasters





Component 3: Supporting the introduction of pilot European Union Smart/Intelligent Grid systems (cont.)

- Result 3.2: Simulation system to demonstrate the technical and economic merits of the pilot Smart/Intelligent Grid system developed and tested
 - Simulation Model completed and demonstrated during the hands-on trainingworkshop. This allows the participants to change the inputs and test the operations of the simulation model.



System profile (MW)

change & energy security

Funded by:

Main Actors/Stakeholders

Role(s)				
-Participation in capacity building activities				
-Potential host of pilot smart grid system				
-Provision of information on components for feasibility study and				
computer simulation				
-Participation in capacity building activities				
-Hosting of EU dialogues				
-Provision of experts in corporate exchanges				
-Provision of information on components for feasibility study and				
computer simulation				
-Participation in capacity building activities				
-Identification of potential areas for piloting of smart grid systems				
-Participation in dialogues with EU counterparts and other capacity				
building activities				
-Hosting of corporate exchanges from EU companies				
-Provision of information on components for feasibility study and				
computer simulation				
-Provision of information on components for feasibility study and				
computer simulation				
-Participation in training-workshops				
-Regular use of computer simulation for planning and decision-making				
related to future energy capacity additions in the country and				
investments in transmission and distribution networks				

Funded by:

THANK YOU

Smart Thai Project Materials are available on website: http://wadethai.org/smartthai/

