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Abstract 

The growing uptake of residential photovoltaic (PV) systems is driving the need for distribution companies to estimate voltage 

rise issues in low voltage (LV) networks, for both operational and planning purposes. Operationally, voltage calculations can 

help determining specific settings (e.g., PV curtailment). In planning, voltage calculations can be used to determine the PV 

hosting capacity of a given LV network. However, voltage calculations are normally based on power flow analyses and, 

therefore, require detailed three-phase electrical models which are not readily available for most distribution companies. Taking 

advantage of smart meters, this paper proposes an approach to calculate voltages without electrical models by capturing the 

nonlinear relationships among the historical data (demand and voltages) and the corresponding LV feeder using a Neural 

Network (with one hidden layer). Using cross-validation to determine the most suitable hyperparameters and a realistic 

Australian LV feeder with 31 single-phase customers, results demonstrate that the approach is very promising as it can accurately 

calculate voltages for unseen PV scenarios. This approach can make it possible for distribution companies to bypass the time-

consuming process of producing LV network models and carry out accurate voltage calculations for any type of what-if 

scenarios involving PV, batteries, electric vehicles, etc.

1. Introduction 

The widespread adoption of residential PV systems is 

causing voltage rise issues on LV networks, driving the 

need for distribution companies to accurately estimate 

potential overvoltage problems, from both operational and 

planning purposes. To perform an accurate assessment of 

residential PV systems impacts on customer voltages, 

distribution companies need to carry out voltage 

calculations. Operationally, voltage calculations can help 

determining specific control settings to maintain voltages 

within statutory limits such as PV curtailment. From a 

planning perspective, voltage calculations can be used to 

determine the PV hosting capacity of a given LV network. 

However, voltage calculations are normally based on power 

flow analyses and, therefore, in the context of residential 

customers, require detailed three-phase LV network 

electrical models which are not readily available for most 

distribution companies around the world.  

 

Although many distribution companies currently count with 

georeferenced maps of their LV feeders through 

Geographical Information Systems (GIS), the 

corresponding electrical models (topology and parameters) 

are not available in most cases due to data limitations 

ranging from impedance values to phase connectivity. This 

creates a significant barrier for distribution companies to 

accurately assess the impacts of residential PV systems on 

customers voltages. 

 

Despite the challenges with electrical models of LV 

networks, thanks to the growing deployment of smart 

meters, there is an opportunity for distribution companies to 

exploit the corresponding data available at customer level, 

i.e., historical measurements of average active power (𝑃 in 

kW), average reactive power (𝑄 in kvar), and average 

voltage magnitudes (𝑉 in V), corresponding to intervals 

ranging from a few seconds to 30 mins. These values could 

be used to capture the physics of a given LV network by 

applying regression methods. If this is successful within an 

acceptable accuracy, model-free voltage calculations (i.e., 

without electrical models) could be carried out by 

specifying 𝑃 and 𝑄 of each customer at a given instant.  

 

Indeed, recent works, such as [1] and [2], investigate such 

opportunity. In [1], smart meter data of a real LV network 

is used. Despite the accurate results, due to the absence of 

the corresponding LV network electrical model, voltage 

calculations are validated on historical data only and not 

assessed for active power values that are outside of the 

historical data (for instance, larger PV penetration levels). 

Furthermore, the approach is not disclosed and the effect of 

reactive power over customers voltages is not considered. 

In [2] emulated data, i.e., running power flows using a full 
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electrical model, at certain points in the network is used to 

assess the effectiveness of multiple regressors. A two-step 

regressor is proposed with accurate results. However, the 

approach is developed and tested on a single-phase balanced 

medium voltage (MV) network, i.e., does not cater for the 

unbalanced nature of LV networks.  

 

Taking advantage of smart meters, this paper proposes a 

model-free voltage calculation approach based on nonlinear 

regressions, specifically, using Neural Networks (NNs). 

Thus, a tailored NN with a single hidden layer is trained to 

capture the nonlinear relationships among the historical 

single-phase smart meter data (active powers, reactive 

powers, and voltage magnitudes of all customers) and the 

corresponding LV feeder. Once the NN is trained, 

customers voltage calculations (NN outputs) for any type of 

what-if scenario of customers demand/generation (NN 

inputs) are enabled. This approach is adapted from a 

previous work of the authors [3] using cross-validation to 

determine the most suitable hyperparameters without 

requiring any specifications from the historical data (e.g., 

evolution of PV penetration). The effectiveness of the 

proposed approach is demonstrated on a realistic Australian 

LV feeder with 31 single-phase customers. To illustrate the 

accuracy of the proposed approach on unseen PV scenarios, 

voltage calculations are assessed using significantly higher 

PV penetration levels than those observed in the historical 

data used to train the NN. 

2. Voltage Calculations 

This section presents the relationships among the historical 

single-phase smart meter data and the studied LV feeder to 

be captured by the Neural Network (NN). The historical 

data of a given LV feeder is represented by the data sets 𝑷, 

𝑸 and 𝑽, which contain the values of average active power, 

reactive power, and voltage magnitudes, respectively, for all 

customers, collected at regular time intervals (e.g., every 5, 

30 mins) across the considered time period (e.g., a month, a 

year). The dimensions of 𝑷, 𝑸 and 𝑽 are given by |𝑇| × |𝐶|, 
where |𝑇| accounts for the total number of time intervals in 

the considered time period and |𝐶| represents the total 

number of customers in the studied LV feeder. Using the 

historical smart meter data (𝑷, 𝑸 and 𝑽), a tailored NN is 

trained to fit the nonlinear relationships among its inputs (𝑷 

and 𝑸) and its outputs (𝑽) as presented in (1), where 𝑾 

corresponds to the matrix of trainable parameters of the NN 

(further details are presented in section 3). 

     𝑽 = 𝑓𝑁𝑁(𝑷, 𝑸, 𝑾) (1) 

Once the NN is trained, i.e., 𝑓𝑁𝑁 is captured by defining 

suitable NN parameters 𝑾, voltage calculations are enabled 

for any type of what-if scenarios. A what-if scenario is 

represented by the data sets �̅� and �̅�, which contain specific 

values of active and reactive power, respectively, for all 

customers. These data sets are used along with the 

relationship obtained in (1) to calculate all customer 

voltages �̅�𝒄𝒂𝒍𝒄 as shown in (2). 

    �̅�𝒄𝒂𝒍𝒄 = 𝑓𝑁𝑁(�̅�, �̅�, 𝑾) (2) 

3. Neural Networks 

This section presents a brief overview of Neural Networks 

(NNs). A NN corresponds to a mathematical model 

composed of interconnected processing units called neurons 

(also known as perceptrons). The number of neurons along 

with activation functions (e.g., Tanh, ReLu, SeLu, etc.), 

learning rates, and epochs, are denoted as hyperparameters. 

Hyperparameters correspond to external configuration 

variables that determine the NN structure and its learning 

process. On the other hand, NN parameters represent 

internal variables that are the results of the learning process, 

such as the weight and bias parameters.  

 

A graphical representation of a single neuron is presented in 

Fig. 1, where 𝑿𝒏 with 𝑛 in 𝑁 (set of inputs) corresponds to 

the 𝑛-th input vector and 𝒀 represents the neuron output 

vector, 𝑤𝑛 with 𝑛 in 𝑁 accounts for the corresponding 

weight parameters, and the filled grey node is to represent 

an additional input variable that simply store the value of 1, 

used to introduce the bias parameter (𝑏𝑜). Note that |𝑁| 
accounts for the total number of inputs in 𝑁. Thus, as shown 

in Fig. 1, the output of a single neuron corresponds to an 

activation function (𝜑) applied over the weighted sum of its 

inputs shifted by the bias parameter, as presented in (3) [4]. 

 
Fig.  1. Single neuron graphical representation 

𝒀 =  𝜑 ( ∑ 𝑤𝑛𝑿𝒏 +  𝑏0

𝑛 ∈ 𝑁

) 

 

(3) 

A Multilayer Feedforward Neural Network (also known as 

multilayer perceptron) with a single hidden layer is 

presented in Fig. 2 [5]. This NN is comprised of several 

fully connected neurons organised in three different layers: 

input, hidden and output layers. The output of each neuron 

corresponds to the input of the subsequent neurons as shown 

in Fig. 2, where 𝑷|𝑸 corresponds to the augmented matrix 

of 𝑷 and 𝑸, 𝑷|𝑸:,𝒏 with 𝑛 in 𝑁 (set of inputs) accounts for 

the 𝑛-th column vector of the augmented matrix 𝑷|𝑸, 

whereas 𝑽:,𝒌 with 𝑘 in 𝐾 (set of outputs) represents the 𝑘-th 

column vector of 𝑽. Considering 𝑷|𝑸:,𝒏 with 𝑛 in 𝑁 as NN 

inputs and 𝑽:,𝒌 with 𝑘 in 𝐾 as NN outputs, the total number 

of NN inputs and outputs are equivalent to 2|𝐶| and |𝐶|, 
respectively. In this context, it is possible to observe that a 

NN corresponds to a nonlinear function from a set of input 

variables 𝑷|𝑸 to a set of output variables 𝑽 adjusted by a set 

of trainable parameters 𝑾, as formulated in (4). Note that 

𝑾 accounts for all weight and bias parameters of the NN. 
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The process to calculate 𝑾 is called training. The training 

algorithm adjust the corresponding weight and bias 

parameters through an iterative procedure in which the error 

function (e.g., mean squared error) between calculated and 

real outputs is minimised. This minimisation corresponds to 

a nonconvex optimisation problem. To solve this problem, 

gradient based optimisation algorithms along with error 

backpropagation techniques are commonly used [5]. Once 

the NN model is trained, the relationship in (1) is captured 

and, consequently, voltage calculations for any type of 

what-if scenarios are enabled as shown in (2). 

4. Methodology 

This section presents the proposed methodology to 

determine the final Neural Network (NN) model to be used 

for model-free voltage calculations on what-if scenarios. 

NNs are trained to extract the relationships presented in (1) 

for the studied LV feeder. However, the accuracy of the 

obtained relationships is highly dependent of NN 

hyperparameters and parameters. To find the most suitable 

NN model (i.e., hyperparameters and parameters) that 

allows to accurately capture these relationships, the 

proposed approach considers three stages: First, the training 

data set is extracted from the available historical single-

phase smart meter data. Then, NN hyperparameters are 

determined based on problem characteristics along with a 

K-fold cross-validation scheme. Finally, a NN with the 

defined hyperparameters is trained to determine all NN 

parameters and, consequently, the final NN model. 

4.1. Training data set 

The training data set 𝑷𝒕𝒓𝒂𝒊𝒏, 𝑸𝒕𝒓𝒂𝒊𝒏, and 𝑽𝒕𝒓𝒂𝒊𝒏 correspond 

to continuous samples extracted from the historical single-

phase smart meter data 𝑷, 𝑸, and 𝑽, that contains the values 

of average active power, reactive power, and voltage 

magnitudes, respectively, for all customers in the studied 

LV feeder, collected at regular time intervals throughout the 

considered training period.  

4.2. Hyperparameter selection 

To select the most suitable NN hyperparameters, the first 

step is to determine NN hyperparameters that can be 

obtained directly by problem characteristics. In this context, 

the input layer dimension corresponds to 2|𝐶| (active and 

reactive powers of all customers), whereas the output layer

dimension is given by |𝐶| (voltages of all customers). Due 

to the regression nature of the problem, mean squared error 

(MSE) as error function as well as linear activation function 

for the output layer are considered. Data sets are scaled to 

values within the range [0,1] to speed up learning and 

convergence processes, and the ADAM algorithm [6] is 

used to solve the nonconvex optimisation problem. Finally, 

to improve the generalisation capabilities of the NN, i.e., the 

ability of the NN to perform well on different scenarios than 

those observed during training, L2 regularisation penalties 

over the loss function as well as constraints over the norm 

of the weight and bias parameters of each layer (i.e., |𝑊𝑙| ∈
[0,1] where 𝑊𝑙 is comprised of all the weight and bias 

parameters of the 𝑙-th layer) are implemented. 

 

Once the previous hyperparameters are defined, a K-fold 

cross-validation scheme (presented in Fig. 3) is used to 

determine the remaining hyperparameters: hidden layer 

neuron number, activation function, learning rate, L2 

regularisation factor and epochs. Thus, the training data set 

(𝑷𝒕𝒓𝒂𝒊𝒏, 𝑸𝒕𝒓𝒂𝒊𝒏, and 𝑽𝒕𝒓𝒂𝒊𝒏) is split in 𝑘 disjoint folds of 

equal dimensions. As presented in Fig. 3, for each 

combination of hyperparameters, a NN is trained 𝑘 

independent times, each time a different set of 𝑘 − 1 folds 

are considered to train the NN whereas the remaining fold 

is used as validation fold to assess NN accuracy at each run 

(given by the MSE between calculated and actual voltages 

in the corresponding validation fold). Each NN model is 

trained using a batch size of 48 points (equivalent to one day 

length). Hence, the training data is shuffled and divided into 

disjoint continuous batches of 48 points before each epoch. 

NN model updates are carried out using every batch 

throughout each epoch of the training process. Finally, the 

NN with the best cross-validation accuracy, calculated as 

the average of the validation accuracies of the 𝑘 runs, 

determine the remaining hyperparameters.   

4.3. Parameter selection 

The last stage is to determine NN parameters. To this end, a 

NN with all the defined hyperparameters is trained from 

scratch using the full training data set (all 𝑘 folds for 

training). The obtained NN model corresponds to the final 

NN model ready to be used for model-free voltage 

calculations on what-if scenarios.  

5. Results 

This section presents the results of the case study. As case 

study, model-free voltage calculations are carried out on a 

realistic three-phase LV feeder (400V line-to-line) with 31 

 
Fig.  2. Multilayer feedforward neural network with a 

single hidden layer  

         𝑽 = 𝑓𝑁𝑁(𝑷|𝑸, 𝑾) (4) 

 

 
Fig.  3. K-fold cross-validation scheme 
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single-phase customers from Victoria, Australia (presented 

in Fig. 4). The LV feeder is supplied by a transformer of  

22kV/433V with the off-load tap changer in its nominal 

position, i.e., providing a natural boost of approximately 8% 

which is often seen in Australia. 31 single-phase customers 

are connected through single-phase service cables, from 

which 11, 10 and 10 customers are connected to phase 1 

(red), phase 2 (green), and phase 3 (blue), respectively.  

5.1. Synthetic smart meter data 

To illustrate the accuracy of the proposed approach on 

unseen PV scenarios, voltage calculations are assessed with 

significantly higher PV penetration levels than those 

observed in the historical data (𝑷𝒕𝒓𝒂𝒊𝒏, 𝑸𝒕𝒓𝒂𝒊𝒏, and 𝑽𝒕𝒓𝒂𝒊𝒏) 

with which the NN is trained. To emulate this with an 

adequate correspondence, a synthetic data approach is 

implemented. Hence, power flow simulations are carried 

out in OpenDSS [7] using real half-hourly active power 

demands along with normalised PV generation profiles 

from Victoria, Australia (from 2016 and 2014, respectively, 

provided by the Australian distribution company AusNet 

Services). A random inductive power factor between 0.90 

and 0.99 for each customer at each half-hourly interval is 

used to emulate reactive power demand. Thus, a training 

data set is created to emulate 3 consecutive winter weeks 

with 0% of PV penetration in the studied LV feeder, 

whereas two test data sets (what-if scenarios) are created to 

emulate 3 consecutive summer weeks with 51.6 % and 

100% of PV penetration in the studied LV feeder, i.e., 16 

and 31 customers with a 4.5 kW PV system each, 

respectively. 

5.2. Neural network model selection 

The algorithm used to train and assess each NN model is 

implemented in Keras [8] which corresponds to a deep 

learning library written in Python that runs on top of the 

machine learning open-source platform Tensorflow [9]. The 

training data set is used to define suitable hyperparameters 

and parameters and, therefore, the final NN model, through 

the following process. 
 

The first step is to define the hyperparameters which are 

determined by problem characteristics. Thus, the next 

hyperparameters are defined: 62 as NN input dimension 

(active and reactive powers of the 31 customers), 31 as NN 

output dimension (voltages of all customers), linear 

activation function for the output layer as well as MSE as 

loss function (regression problem), ADAM as optimiser 

(robustness [6]), and L2 regularisation along with weight 

and bias parameters constraints (to enhance NN 

generalisation capabilities).  

Then, with these hyperparameters defined, the remaining 

hyperparameters need to be determined. To this end, a 

search is carried out based on a K-fold cross-validation 

scheme (Fig. 3) splitting the training data set in 3 folds of 1-

week length. The search is carried out using several 

combinations (810 in total) of neuron numbers (from 31 to 

310 considering a fixed step size equals to 31), activation 

functions (Tanh, ReLu, SeLu), learning rates along with L2 

regularisation factors (1𝑥10−3, 1𝑥10−4, 1𝑥10−5), and 

epochs (500, 1,000, 2,500). Using a batch size of 48 points, 

the NN with the best cross-validation accuracy (0.0001 V2) 

is found with 248 (31𝑥8) neurons considering Tanh as 

activation function, a learning rate of 1𝑥10−4, a L2 

regularisation factor of 1𝑥10−5, and 1,000 epochs. The full 

results are presented in Table 1.  

Table 1. Neural Network Hyperparameters 

Input layer 62 Optimiser ADAM 
Neurons HL 248 Learning rate 1𝑥10−4 

Act. Func. HL Tanh Regularisation L2 (1𝑥10−5) 
Output layer 31 Epochs 1,000 

Act. Func. OL Linear W&B Const. |𝑊𝑙| ∈ [0,1] 
Loss Func. MSE Batch size 48 points 

The obtained NN accounts for a total of 23,343 parameters. 

The final step is to determine the values of these parameters. 

To this end, a NN with the defined hyperparameters (Table 

1) is trained from scratch using the entire training data set 

(all 3 folds) to train the NN. This NN model define all NN 

parameters and correspond to the final NN model to be used 

for model-free voltage calculations.  

5.3. Model-free voltage calculations results 

The performance of the final NN model is assessed using 

both test data sets (i.e., 51.6% and 100% of PV penetration). 

For both cases, time series voltage calculations carried out 

by the final NN model along with the corresponding test 

voltage values (actual voltages), and voltage calculations 

deviation (given by calculated voltages minus test voltage 

values) are presented in Fig. 5 for the customer with the 

biggest voltage rise issue due to PV generation (i.e., the 

customer located at the end of the LV feeder). Voltage 

calculations overall performance is shown in Table 2, where 

MSE, average absolute deviation (Av. Dev.), and maximum 

absolute deviation (Max. Dev.) metrics are presented. Due 

to the different PV penetration levels considered for the 

training data set (0%) and the test data sets (51.6% and 

100%), voltage calculations performance is presented for 

solar (06-20 hrs) and nonsolar hours (remaining hours).  
 

Results observed in Fig. 5 and Table 2 demonstrate that the 

proposed model-free voltage calculations approach 

achieves a very accurate performance, despite the 

significant differences in LV feeder PV penetration levels 

between the training data set (no PV) and the test data sets 

(51.6% and 100% PV). The very low MSE, Av. Dev., and 

Max. Dev. values show that the proposed approach is able 

to perform accurate voltage calculations on unseen PV 

penetration scenarios, which is critical for operational and 

planning purposes. It is important to note that the overall 

Fig.  4. Realistic LV Feeder 
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performance decreases during solar hours. Nevertheless, 

great accuracy is accomplished in both solar and nonsolar 

hours. Finally, the average percentage error corresponds to 

0.0083% and 0.0094% in the 51.6 and 100% PV penetration 

test data set, respectively. Very promising results to 

calculate voltages without the need for LV feeder electrical 

models and power flow analyses. 

6. Conclusions 

Detailed three-phase LV networks electrical models 

(topology and parameters) are not readily available for most 

distribution companies around the world. This creates a 

significant barrier for distribution companies to perform 

power flow-based analysis to accurately assess the impacts 

of residential PV systems on customer voltages. Taking 

advantage of smart meters, this paper proposes a model-free 

voltage calculation approach that captures the nonlinear 

relationships among the historical single-phase smart meter 

data (active powers, reactive powers, and voltage 

magnitudes of all customers) and the corresponding LV 

feeder through nonlinear regressions using a Neural 

Network (NN) with a single hidden layer. Thus, for a given 

LV feeder, a tailored NN is trained to fit the nonlinear 

relationships among its inputs (active and reactive powers 

of all customers) and its outputs (voltage magnitudes of all 

customers). The trained NN enables distribution companies 

to perform accurate and extremely quick voltage 

calculations for any kind of what-if scenarios. To find the 

most suitable NN hyperparameters for the studied LV 

feeder, a cross-validation scheme is implemented.  

As study case, voltage calculations are carried out on a 

realistic three-phase LV feeder (400 V line-to-line) with 31 

single-phase customers from Victoria, Australia. The 

obtained results demonstrate that the proposed approach can 

perform very accurate voltage calculations on what-if 

scenarios consisting of significantly higher PV penetration 

levels than those observed in the historical data used to train 

the NN model, all without the need for power flow analyses 

and LV feeder electrical models, enabling distribution 

companies to bypass the time-consuming process of 

producing LV network models and carry out accurate 

voltage calculations for any type of what-if scenarios 

involving PV, batteries, electric vehicles, etc. Furthermore, 

due to the nature of the calculations performed by the NN 

model (direct equations), the proposed approach represents 

not only an accurate but also an extremely quick alternative 

to power flow-based voltage calculations making it suitable 

for both operational (e.g., determining specific settings such 

as PV curtailment) and planning analyses (e.g., PV hosting 

capacity assessment). 
 

Finally, other regression methods (e.g., support vector 

regression, polynomial fitting, and gaussian process 

regression) could also perform well and, therefore, need to 

be investigated. Furthermore, the impacts of the medium 

voltage network over the proposed approach also need to be 

assessed. 
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Fig.  5 Time series voltage calculations. 

(Upper) 51.6% PV Penetration test case, 
(Lower) 100% of PV Penetration test case 

 Table 2. Model-free voltage calculations overall results 

PV 
Penetration 

Metric 
Solar 
hours 

Nonsolar 
hours 

Global 

51.6%, 
(16/31 

customers 
with PV) 

MSE. (V2) 0.0020 0.0002 0.0011 

Av. Dev. (V) 0.0318 0.0074 0.0206 

Max. Dev. (V) 0.2520 0.2234 0.2520 

100%, 
(31/31 

customers 
with PV) 

MSE. (V2) 0.0030 0.0002 0.0017 

Av. Dev. (V) 0.0372 0.0074 0.0236 

Max. Dev. (V) 0.2941 0.2234 0.2941 
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